• Login
    View Item 
    •   Home
    • Massey Documents by Type
    • Theses and Dissertations
    • View Item
    •   Home
    • Massey Documents by Type
    • Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A portable multi-modal micro-imaging system for automated scanning and image stitching applications : a thesis submitted to Massey University in accordance with the requirements of the degree of Master of Engineering in the School of Engineering and Advanced Technology

    Icon
    View/Open Full Text
    NaqviMEThesis.pdf (17.66Mb)
    Export to EndNote
    Abstract
    Microscopic imaging is an important element in many fields like biology, medicine, diagnostics, engineering, and materials research. Muti-modal microscopes are ideal for imaging samples that reveal unseen structures that could not otherwise be seen with normal bright-field microscopes. Point-of-care micro-imaging devices are ones that can deliver the features of a microscope in areas where access to a laboratory or medical facilities are scarce. This thesis presents the development of a portable micro-imaging system that uses multi-modal illumination to image samples in bright-field, fluorescence, ambient and laser diffraction modes. A systematic design method has been used to develop the system from the conceptual phase to a working prototype. The system incorporates variable magnification through an inverted turret system and a GUI application for live image view, automatic scanning, auto-focusing and image processing. The utility of the system is demonstrated through imaging stained biological samples for a local industry application. The acquired images are measured against sharpness and noise. It is observed that the sharpness and noise of the images produced vary with the type of sample: samples with higher contrast generally produce sharper images with less noise. It has also been found that diffused ambient illumination produces the most consistent sharpness and noise scores between magnifications. Performance of algorithms used is discussed and improvements are suggested for building a more compact and stable platform including a method to calibrate measurements for particle size estimation.
    Date
    2019
    Author
    Naqvi, Adam
    Rights
    The Author
    Publisher
    Massey University
    Description
    Figures are re-used with permission.
    URI
    http://hdl.handle.net/10179/15665
    Collections
    • Theses and Dissertations
    Metadata
    Show full item record

    Copyright © Massey University
    | Contact Us | Feedback | Copyright Take Down Request | Massey University Privacy Statement
    DSpace software copyright © Duraspace
    v5.7-2023.7-7
     

     

    Information PagesContent PolicyDepositing content to MROCopyright and Access InformationDeposit LicenseDeposit License SummaryTheses FAQFile FormatsDoctoral Thesis Deposit

    Browse

    All of MROCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Copyright © Massey University
    | Contact Us | Feedback | Copyright Take Down Request | Massey University Privacy Statement
    DSpace software copyright © Duraspace
    v5.7-2023.7-7