• Login
    View Item 
    •   Home
    • Massey Documents by Type
    • Theses and Dissertations
    • View Item
    •   Home
    • Massey Documents by Type
    • Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Parallel simulation methods for large-scale agent-based predator-prey systems : a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Computer Science at Massey University, Albany, New Zealand

    Icon
    View/Open Full Text
    QuachPhDThesis.pdf (20.58Mb)
    Export to EndNote
    Abstract
    The Animat is an agent-based artificial-life model that is suitable for gaining insight into the interactions of autonomous individuals in complex predator-prey systems and the emergent phenomena they may exhibit. Certain dynamics of the model may only be present in large systems, and a large number of agents may be required to compare with macroscopic models. Large systems can be infeasible to simulate on single-core machines due to processing time required. The model can be parallelised to improve the performance; however, reproducing the original model behaviour and retaining the performance gain is not straightforward. Parallel update strategies and data structures for multi-core CPU and graphical processing units (GPUs) are developed to simulate a typical predator-prey Animat model with improved perfor- mance while reproducing the behaviour of the original model. An analysis is presented of the model to identify dependencies and conditions the parallel update strategy must satisfy to retain original model behaviour. The parallel update strategy for multi-core CPUs is constructed using a spatial domain decomposition approach and supporting data structure. The GPU implementation is developed with a new update strategy that consists of an iterative conflict resolution method and priority number system to simultaneously update many agents with thousands of GPU cores. This update method is supported by a compressed sparse data structure developed to allow for efficient memory transactions. The performance of the Animat simulation is improved with parallelism and without a change in model behaviour. The simulation usability is considered, and an internal agent definition system using a CUDA device Lambda feature is developed to improve the ease of configuring agents without significant changes to the program and loss of performance.
    Date
    2019
    Author
    Quach, Dara (Minh) Quang
    Rights
    The Author
    Publisher
    Massey University
    URI
    http://hdl.handle.net/10179/15802
    Collections
    • Theses and Dissertations
    Metadata
    Show full item record

    Copyright © Massey University
    | Contact Us | Feedback | Copyright Take Down Request | Massey University Privacy Statement
    DSpace software copyright © Duraspace
    v5.7-2020.1-beta1
     

     

    Tweets by @Massey_Research
    Information PagesContent PolicyDepositing content to MROCopyright and Access InformationDeposit LicenseDeposit License SummaryTheses FAQFile FormatsDoctoral Thesis Deposit

    Browse

    All of MROCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Copyright © Massey University
    | Contact Us | Feedback | Copyright Take Down Request | Massey University Privacy Statement
    DSpace software copyright © Duraspace
    v5.7-2020.1-beta1