• Login
    View Item 
    •   Home
    • Massey Documents by Type
    • Theses and Dissertations
    • View Item
    •   Home
    • Massey Documents by Type
    • Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Insulin resistence in adult type-2 diabetic skeletal muscle : the effects of exercise and dietary-protein induced skeletal mucscle plasticity controlling microvascular blood flow and glucose transport : a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy (Sport and Exercise Science), Massey University, Wellington, New Zealand

    Icon
    View/Open Full Text
    PeetersPhDThesis.pdf (3.243Mb)
    Export to EndNote
    Abstract
    Introduction: Insulin-stimulated skeletal muscle glucose uptake is impaired in Type-2 Diabetes Mellitus (T2DM). Insulin resistance leads to reduced skeletal muscle microvascular function and insulin signalling. The purpose of the thesis was to evaluate and compare the effect of chronic intake of a novel keratin-derived protein (WDP) and whey protein, in conjunction with exercise training, on glucose homeostasis and skeletal muscle glucose uptake in T2DM. Methods: In a randomized, double-blinded clinical trial, thirty-five men and women with T2DM completed a 14-week exercise intervention but were randomly assigned to ingest either post-exercise and evening supplements of 20 g WDP-whey protein blend (WDP, n = 11), whey protein (WHEY, n = 12) or isocaloric maltodextrin (CON, n = 12). Before and after the intervention, fasting HbA1c and glucose clearance rate (GCR) during a hyperinsulinaemic isoglycaemic clamp were measured. Insulin-stimulated skeletal muscle blood flow and volume were measured during the clamps via near -infrared spectroscopy. Muscle from the m. vastus lateralis was harvested prior to and at 1-h into the clamps to determine skeletal muscle insulin signalling proteins. Results: Substantially bigger improvements in WDP compared to WHEY or CON were found for GCR, insulin-stimulated GLUT4 translocation and insulin-stimulated blood flow. Fasting eNOSser1177/eNOS possibly increased in WDP and WHEY compared to CON. Capillarization improved in all groups with unclear differences between groups. Conclusion: WDP-whey blend ingestion during 14 weeks of exercise training improved skeletal muscle plasticity and some processes involved in insulin-stimulated glucose uptake to a greater magnitude compared to whey protein or an exercise-only group in T2DM. WDP protein holds the potential to be an additional therapy to exercise as a treatment in T2DM.
    Date
    2019
    Author
    Peeters, Wouter
    Rights
    The Author
    Publisher
    Massey University
    URI
    http://hdl.handle.net/10179/15809
    Collections
    • Theses and Dissertations
    Metadata
    Show full item record

    Copyright © Massey University
    | Contact Us | Feedback | Copyright Take Down Request | Massey University Privacy Statement
    DSpace software copyright © Duraspace
    v5.7-2020.1-beta1
     

     

    Tweets by @Massey_Research
    Information PagesContent PolicyDepositing content to MROCopyright and Access InformationDeposit LicenseDeposit License SummaryTheses FAQFile FormatsDoctoral Thesis Deposit

    Browse

    All of MROCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Copyright © Massey University
    | Contact Us | Feedback | Copyright Take Down Request | Massey University Privacy Statement
    DSpace software copyright © Duraspace
    v5.7-2020.1-beta1