• Login
    View Item 
    •   Home
    • Massey Documents by Type
    • Theses and Dissertations
    • View Item
    •   Home
    • Massey Documents by Type
    • Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Temperature- and host-dependent transcriptional responses in the entomopathogenic bacterium, Yersinia entomophaga MH96 : a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Genetics at Massey University, Albany Campus, New Zealand

    Icon
    View/Open Full Text
    PaulsonPhDThesis.pdf (18.28Mb)
    Export to EndNote
    Abstract
    Yersinia entomophaga MH96 is a virulent pathogenic bacterium that is infective towards a broad range of insects and is under development as a biopesticide. MH96 produces insecticidal toxin complex called Yen-TC that is secreted at temperatures of 25 °C and below and has been shown to be the primary virulence factor (VF) during per os challenge against the New Zealand grass grub, Costelytra giveni and other agricultural pests (Hurst et al., 2011a, 2019). New insights into the pathobiology of MH96 during insect infection were gained from the in vivo transcriptome, including identification of a core secreted weaponry of co-expressed/co-secreted VFs, including Yen-TC and other exoenzymes; however, many other diverse types of VFs, including toxins, effectors, fimbriae, secretion systems, efflux pumps, iron acquisition, stress response and metabolic adaptation were also identified as highly expressed under in vivo conditions. A small DNA-binding protein, Yen6, was shown to be under thermoregulation at the transcriptional level and host-dependent-regulation at the post-transcriptional level and contributed to virulence during intrahemocoelic infection of Galleria mellonella at 37 °C. The in vivo transcriptome of Δyen6 and in vitro DNA-binding specificity analysis provided evidence that Yen6 is a novel LytTR-containing regulator that activates a ribose uptake/metabolism gene cluster, rbsD-xylG-rbsC-xylF-rbsK-ccpA, and represses a fructose uptake/metabolism gene cluster, IIA-fruK-IIB and a gene for RNA-binding protein yhbY during infection at 37 °C. Another small DNA-binding protein, Yen7, was also implicated as a potential temperature-dependent activator of Yen-TC component genes and over-expression of yen7 resulted in restored secretion by MH96 at 37 °C; however, deletion of yen7 did not abrogate Yen-TC production. Experimental investigations into potential regulatory linkages between Yen6 and yen7 were undertaken, and evidence to date does not support Yen6 as transcriptional repressor of yen7. A 17.5 Kb unstable element within the genome of MH96 with linkages to Yen-TC and toxin secretion, motility and cell shape was identified. Overall the findings presented in this thesis represent the most detailed investigation of MH96 pathogenesis to date, reinforcing MH96 as one of the most highly entomopathogenic bacteria known to humankind; yet suggesting MH96 has possibly maintained at least one core thermoregulatory mechanism more typical of an opportunistic pathogen.
    Date
    2020
    Author
    Paulson, Amber Rose
    Rights
    The Author
    Publisher
    Massey University
    URI
    http://hdl.handle.net/10179/15833
    Collections
    • Theses and Dissertations
    Metadata
    Show full item record

    Copyright © Massey University
    | Contact Us | Feedback | Copyright Take Down Request | Massey University Privacy Statement
    DSpace software copyright © Duraspace
    v5.7-2020.1-beta1
     

     

    Tweets by @Massey_Research
    Information PagesContent PolicyDepositing content to MROCopyright and Access InformationDeposit LicenseDeposit License SummaryTheses FAQFile FormatsDoctoral Thesis Deposit

    Browse

    All of MROCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Copyright © Massey University
    | Contact Us | Feedback | Copyright Take Down Request | Massey University Privacy Statement
    DSpace software copyright © Duraspace
    v5.7-2020.1-beta1