• Login
    View Item 
    •   Home
    • Massey Documents by Type
    • Theses and Dissertations
    • View Item
    •   Home
    • Massey Documents by Type
    • Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Loss of HP1α alters nuclear integrity to promote cellular invasion : a thesis presented in partial fulfilment of the requirements for the degree of Master of Science in Biochemistry at Massey University, Manawatū, New Zealand

    Icon
    View/Open Full Text
    SolomonMScThesis.pdf (22.59Mb)
    Export to EndNote
    Abstract
    The onset of invasion is a key step towards the development of metastatic cancer. For a cell to invade through interstitial spaces in the tissue requires a reduction in nuclear rigidity as the cell needs to deform to squeeze through small spaces. Heterochromatin Protein 1α (HP1α) is a protein that defines domains of heterochromatin, the highly compact regions of the genome, and is essential for maintaining the appropriate patterns of gene expression and genome stability. Loss or reduction of HP1α has been correlated with an increase in invasive potential in human tumours. Using an established model of Drosophila melanogaster epithelial cell invasion, the causative role HP1α plays in suppressing cellular invasive is confirmed within an epithelial tissue microenvironment. This model also demonstrates that loss of the Drosophila melanogaster HP1 homologue synergistically promotes cellular invasion in conjunction with an activated malignant signalling pathway. Importantly, human HP1α is shown to rescue this highly invasive Drosophila phenotype and demonstrates the relevance of this model to human disease, and its use for exploring protein interactions in a cellular microenvironment. As loss of nuclear integrity has been linked to a reduction in peripheral heterochromatin, the biophysical mechanisms by which HP1α acts as a suppressor of invasive potential were explored in the poorly invasive MCF7 breast cancer cell line with constitutive HP1α knock-down. These cells with reduced HP1α expression had a significant loss of nuclear membrane integrity and stiffness. The underlying nuclear lamina meshwork and associated peripheral heterochromatin was disrupted. This was associated with an increased solubility of lamina proteins, particularly lamin A, as well as the altered localisation of a number of peripheral nuclear proteins. In summary, this work established the important contribution of HP1α to the mechanical integrity of the nucleoskeleton and the role HP1α plays in suppressing malignant signalling pathways that promote cell invasion.
    Date
    2019
    Author
    Solomon, Raoul
    Rights
    The Author
    Publisher
    Massey University
    URI
    http://hdl.handle.net/10179/15898
    Collections
    • Theses and Dissertations
    Metadata
    Show full item record

    Copyright © Massey University
    | Contact Us | Feedback | Copyright Take Down Request | Massey University Privacy Statement
    DSpace software copyright © Duraspace
    v5.7-2020.1-beta1
     

     

    Tweets by @Massey_Research
    Information PagesContent PolicyDepositing content to MROCopyright and Access InformationDeposit LicenseDeposit License SummaryTheses FAQFile FormatsDoctoral Thesis Deposit

    Browse

    All of MROCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Copyright © Massey University
    | Contact Us | Feedback | Copyright Take Down Request | Massey University Privacy Statement
    DSpace software copyright © Duraspace
    v5.7-2020.1-beta1