Analysis of Hamiltonian boundary value problems and symplectic integration: a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Mathematics at Massey University, Manawatu, New Zealand

Thumbnail Image
Open Access Location
Journal Title
Journal ISSN
Volume Title
Massey University
The Author
Ordinary differential equations (ODEs) and partial differential equations (PDEs) arise in most scientific disciplines that make use of mathematical techniques. As exact solutions are in general not computable, numerical methods are used to obtain approximate solutions. In order to draw valid conclusions from numerical computations, it is crucial to understand which qualitative aspects numerical solutions have in common with the exact solution. Symplecticity is a subtle notion that is related to a rich family of geometric properties of Hamiltonian systems. While the effects of preserving symplecticity under discretisation on long-term behaviour of motions is classically well known, in this thesis (a) the role of symplecticity for the bifurcation behaviour of solutions to Hamiltonian boundary value problems is explained. In parameter dependent systems at a bifurcation point the solution set to a boundary value problem changes qualitatively. Bifurcation problems are systematically translated into the framework of classical catastrophe theory. It is proved that existing classification results in catastrophe theory apply to persistent bifurcations of Hamiltonian boundary value problems. Further results for symmetric settings are derived. (b) It is proved that to preserve generic bifurcations under discretisation it is necessary and sufficient to preserve the symplectic structure of the problem. (c) The catastrophe theory framework for Hamiltonian ODEs is extended to PDEs with variational structure. Recognition equations for $A$-series singularities for functionals on Banach spaces are derived and used in a numerical example to locate high-codimensional bifurcations. (d) The potential of symplectic integration for infinite-dimensional Lie-Poisson systems (Burgers' equation, KdV, fluid equations,...) using Clebsch variables is analysed. It is shown that the advantages of symplectic integration can outweigh the disadvantages of integrating over a larger phase space introduced by a Clebsch representation. (e) Finally, the preservation of variational structure of symmetric solutions in multisymplectic PDEs by multisymplectic integrators on the example of (phase-rotating) travelling waves in the nonlinear wave equation is discussed.
Listed in 2020 Dean's List of Exceptional Theses
Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
Boundary value problems, Hamiltonian systems, Symplectic geometry, Dean's List of Exceptional Theses