• Login
    View Item 
    •   Home
    • Massey Documents by Type
    • Theses and Dissertations
    • View Item
    •   Home
    • Massey Documents by Type
    • Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Prediction of students' performance through data mining : a thesis presented in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Computer Science, Massey University, Auckland, New Zealand

    Icon
    View/Open Full Text
    UmerBalochPhDThesis.pdf (7.545Mb)
    Export to EndNote
    Abstract
    Government funding to higher education providers is based upon graduate completions rather than on student enrollments. Therefore, unfinished degrees or delayed degree completions are major concerns for higher education providers since these problems impact their long-term financial security and overall cost-effectiveness. Therefore, providers need to develop strategies for improving the quality of their education to ensure increased enrollment and retention rates. This study uses predictive modeling techniques for assisting providers with real-time identification of struggling students in order to improve their course retention rates. Predictive models utilizing student demographic and other behavioral data gathered from an institutional learning platform have been developed to predict whether a student should be classed as at-risk of failing a course or not. Identification of at-risk students will help instructors take proactive measures, such as offering students extra help and other timely supports. The outcomes of this study will, therefore, provide a safety net for students as well as education providers in improving student engagement and retention rates. The computational approaches adopted in this study include machine learning techniques in combination with educational process mining methods. Results show that multi-purpose predictive models that were designed to operate across a variety of different courses could not be generalized due to the complexity and diversity of the courses. Instead, a meta-learning approach for recommending the best classification algorithms for predicting students’ performance is demonstrated. The study reveals how process-unaware learning platforms that do not accurately reflect ongoing learner interactions can enable the discovery of student learning practices. It holds value in reconsidering predictive modeling techniques by supplementing the analysis with contextually-relevant process models that can be extracted from stand-alone activities of process-unaware learning platforms. This provides a prescriptive approach for conducting empirical research on predictive modeling with educational data sets. The study contributes to the fields of learning analytics and education process mining by providing a distinctive use of predictive modeling techniques that can be effectively applied to real-world data sets.
    Date
    2020
    Author
    Umer Baloch, Rahila
    Rights
    The Author
    Publisher
    Massey University
    URI
    http://hdl.handle.net/10179/16330
    Collections
    • Theses and Dissertations
    Metadata
    Show full item record

    Copyright © Massey University
    | Contact Us | Feedback | Copyright Take Down Request | Massey University Privacy Statement
    DSpace software copyright © Duraspace
    v5.7-2020.1-beta1
     

     

    Tweets by @Massey_Research
    Information PagesContent PolicyDepositing content to MROCopyright and Access InformationDeposit LicenseDeposit License SummaryTheses FAQFile FormatsDoctoral Thesis Deposit

    Browse

    All of MROCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Copyright © Massey University
    | Contact Us | Feedback | Copyright Take Down Request | Massey University Privacy Statement
    DSpace software copyright © Duraspace
    v5.7-2020.1-beta1