• Login
    View Item 
    •   Home
    • Massey Documents by Type
    • Theses and Dissertations
    • View Item
    •   Home
    • Massey Documents by Type
    • Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Genetic and genomic studies on milk production and composition, and longevity in New Zealand dairy goats : a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Animal Science at Massey University, Manawatu, New Zealand

    Icon
    View/Open Full Text
    ScholtensPhDThesis.pdf (4.579Mb)
    Export to EndNote
    Abstract
    The New Zealand dairy goat industry is important for producing and exporting high-quality specialised dairy products aimed at niche markets. Efforts to increase the quantity and composition of goat milk will improve profits for farmers and deliver significant economic benefits to New Zealand. However, no formal program exists for the genetic improvement of dairy goats. Therefore, the general aim of this thesis was to perform genetic and genomic studies that contribute to the design of the breeding program for New Zealand dairy goats. The first studies estimated variance components and genetic parameters of total lactation yields of milk, fat and protein, somatic cell score and longevity. The main findings suggest sufficient variation and favourable genetic correlations between these traits, supporting their inclusion into a selection index that predicts profit per animal. A random regression test-day model was then used to predict lactation curves of milk, fat, protein and somatic cell score. Using this model for genetic evaluation will enable the dairy goat industry to move from total yields into the prediction of lactation curves, enabling more accurate predictions and the opportunity of selecting for extended lactations. The first genome-wide association study of dairy goats in New Zealand was conducted using 3,732 animals genotyped with the Caprine 50K SNP chip. A highly significant region on chromosome 19 was associated with yields of milk, fat and protein, and somatic cell score, and a region on chromosome 29 was associated with somatic cell score. A prototype single-step BayesC model was developed to predict genomic breeding values and demonstrated that including genomic information into the evaluation can increase the accuracy of predictions compared to the traditional methods based on pedigrees alone, which is currently implemented in the New Zealand dairy goat industry. This thesis demonstrates that a single-step prediction model that uses genomic information would put the New Zealand dairy goat industry in a very good position to implement a genomic selection scheme. Further studies are required to define clearer breeding objectives and to systematically design a breeding program for the genetic improvement of New Zealand dairy goats.
    Date
    2020
    Author
    Scholtens, Megan
    Rights
    The Author
    Publisher
    Massey University
    URI
    http://hdl.handle.net/10179/16356
    Collections
    • Theses and Dissertations
    Metadata
    Show full item record

    Copyright © Massey University
    | Contact Us | Feedback | Copyright Take Down Request | Massey University Privacy Statement
    DSpace software copyright © Duraspace
    v5.7-2020.1-beta1
     

     

    Tweets by @Massey_Research
    Information PagesContent PolicyDepositing content to MROCopyright and Access InformationDeposit LicenseDeposit License SummaryTheses FAQFile FormatsDoctoral Thesis Deposit

    Browse

    All of MROCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Copyright © Massey University
    | Contact Us | Feedback | Copyright Take Down Request | Massey University Privacy Statement
    DSpace software copyright © Duraspace
    v5.7-2020.1-beta1