Show simple item record

dc.contributor.authorLiu, Qianhe
dc.date.accessioned2010-09-22T23:09:15Z
dc.date.availableNO_RESTRICTIONen_US
dc.date.available2010-09-22T23:09:15Z
dc.date.issued2005
dc.identifier.urihttp://hdl.handle.net/10179/1669
dc.description.abstractProduction of Pinus radiata is a major contributor to New Zealand's economy and new plantings are a valuable carbon sink. Phosphorus (P) deficiency and high P fixing capacity of some volcanic ash soils (e.g. Allophanic Soil) may constrain radiata productivity. This thesis investigates the role of ectomycorrhizal (ECM) root processes in the acquisition of P by P. radiata fiom native soil and soil fertilised with two reactive phosphate rock (RPR) fertilisers. The application of finely-divided RPRs to a P deficient Allophanic Soil significantly increased P. radiata seedling growth and P uptake in 10 month pot trials. RPR dissolution was high in this soil, and it was further enhanced by the radiata rhizosphere processes. The development and formation of ECM in radiata seedlings was stimulated by low rates of RPR application but was hindered in unfertilised soils and high rates of RPR application. The P. radiata ECM roots induced acidification and increased oxalate concentration and phosphatase activities in the rhizosphere soil. These changes in rhizosphere biochemical properties were associated with enhanced solubilisation of fertiliser and soil inorganic P and increased mineralisation of organic P, leading to increased P bioavailability in the rhizosphere. ECM inoculation of P. radiata roots with Rhizopogen rubescens and Suillus luteus stimulated production of phosphatase enzymes and oxalate and induced acidification in the rhizosphere. The extent of root-induced changes in the rhizosphere soils was associated with ECM hyphae length density. A technique using pulse labelling of radiata shoots with 14CO2 showed promise in estimating the active ECM hyphae density. The 14C activity was highly correlated with ECM hyphae density measured by an agar film technique. Overall, observations made in this thesis indicate that sparingly soluble forms of organic and inorganic P in soils low in plant-available P are readily solubilised and utilised for P. radiata growth through ECM rhizosphere processes.en_US
dc.language.isoenen_US
dc.publisherMassey Universityen_US
dc.rightsThe Authoren_US
dc.subjectSoilsen_US
dc.subjectPhosphorus in soilen_US
dc.subjectPhosphatic fertilisersen_US
dc.subjectForest soilsen_US
dc.subjectPinus radiataen_US
dc.subjectNew Zealanden_US
dc.subject.otherFields of Research::300000 Agricultural, Veterinary and Environmental Sciences::300100 Soil and Water Sciencesen_US
dc.titleRhizosphere processes influencing soil and fertilizer phosphorus availability to Pinus radiata : a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Soil Science at Massey University, Palmerston North, New Zealanden_US
dc.typeThesisen_US
thesis.degree.disciplineSoil Scienceen_US
thesis.degree.grantorMassey Universityen_US
thesis.degree.levelDoctoralen_US
thesis.degree.nameDoctor of Philosophy (Ph.D.)en_US


Files in this item

Icon
Icon

This item appears in the following Collection(s)

Show simple item record