An investigation into the unsoundness of static program analysis : a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Computer Science at Massey University, Palmerston North, New Zealand

Thumbnail Image
Open Access Location
Journal Title
Journal ISSN
Volume Title
Massey University
The Author
Static program analysis is widely used in many software applications such as in security analysis, compiler optimisation, program verification and code refactoring. In contrast to dynamic analysis, static analysis can perform a full program analysis without the need of running the program under analysis. While it provides full program coverage, one of the main issues with static analysis is imprecision -- i.e., the potential of reporting false positives due to overestimating actual program behaviours. For many years, research in static program analysis has focused on reducing such imprecision while improving scalability. However, static program analysis may also miss some critical parts of the program, resulting in program behaviours not being reported. A typical example of this is the case of dynamic language features, where certain behaviours are hard to model due to their dynamic nature. The term ``unsoundness'' has been used to describe those missed program behaviours. Compared to static analysis, dynamic analysis has the advantage of obtaining precise results, as it only captures what has been executed during run-time. However, dynamic analysis is also limited to the defined program executions. This thesis investigates the unsoundness issue in static program analysis. We first investigate causes of unsoundness in terms of Java dynamic language features and identify potential usage patterns of such features. We then report the results of a number of empirical experiments we conducted in order to identify and categorise the sources of unsoundness in state-of-the-art static analysis frameworks. Finally, we quantify and measure the level of unsoundness in static analysis in the presence of dynamic language features. The models developed in this thesis can be used by static analysis frameworks and tools to boost the soundness in those frameworks and tools.
Computer software, Development, Computer programming, Java (Computer program language)