• Login
    View Item 
    •   Home
    • Massey Documents by Type
    • Theses and Dissertations
    • View Item
    •   Home
    • Massey Documents by Type
    • Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Intrinsic disorder and coiled coil formation in prostate apoptosis response factor-4 (Par-4) : submitted in fulfilment of the requirements of the degree of Doctor of Philosphy, Institute of Fundamental Sciences, Massey University, New Zealand

    Icon
    View/Open Full Text
    02_whole.pdf (15.59Mb)
    01_front.pdf (217.4Kb)
    Export to EndNote
    Abstract
    Prostate apoptosis response factor-4 (Par-4) is a ubiquitously expressed pro-apoptotic and tumour suppressive protein. Par-4 contains a highly conserved coiled coil (CC) region at the Cterminus, particularly the distal 40 residues fulfil the criteria for a leucine zipper (LZ). This Cterminal domain serves as the primary recognition domain for a large number of binding partners. Par-4 is tightly regulated by the aforementioned binding partners and also by posttranslational modifications. Biophysical data presented here describe Par-4 as primarily an intrinsically disordered protein (IDP). Bioinformatic analysis of the highly conserved Par-4 reveals low sequence complexity and enrichment in polar and charged amino acids. High proteolytic susceptibility and increased hydrodynamic radii are consistent with largely extended structures in solution. Spectroscopic measurements using circular dichroism (CD) and nuclear magnetic resonance (NMR) also reveal characteristic features of intrinsic disorder. Under physiological conditions, data show that Par-4 self-associates via the C-terminal domain possibly through coiled coil formation. Analysis of various constructs comprising the Par-4 LZ domain by NMR, CD, light scattering and other techniques reveals an environment-dependent conformational equilibrium between primarily disordered monomers and predominantly coiled coil dimers. Whereas the disordered monomers are easily observed by NMR, the coiled coil fraction is not amenable to NMR studies possibly due to intermediate exchange processes. Mutational approaches that stabilise the coiled coil fraction result in NMR spectra of lower quality compared to the wild-type form. The high degree of sequence conservation suggest that coiled coil formation and intrinsic disorder are essential for Par-4 to function as an effective regulator of apoptosis.
    Date
    2010
    Author
    Schwalbe, Martin
    Rights
    The Author
    Publisher
    Massey University
    URI
    http://hdl.handle.net/10179/1688
    Collections
    • Theses and Dissertations
    Metadata
    Show full item record

    Copyright © Massey University
    | Contact Us | Feedback | Copyright Take Down Request | Massey University Privacy Statement
    DSpace software copyright © Duraspace
    v5.7-2020.1-beta1
     

     

    Tweets by @Massey_Research
    Information PagesContent PolicyDepositing content to MROCopyright and Access InformationDeposit LicenseDeposit License SummaryTheses FAQFile FormatsDoctoral Thesis Deposit

    Browse

    All of MROCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Copyright © Massey University
    | Contact Us | Feedback | Copyright Take Down Request | Massey University Privacy Statement
    DSpace software copyright © Duraspace
    v5.7-2020.1-beta1