• Login
    View Item 
    •   Home
    • Massey Documents by Type
    • Theses and Dissertations
    • View Item
    •   Home
    • Massey Documents by Type
    • Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Identification of novel avirulence effectors in the Dothideomycete plant pathogens, Venturia inaequalis and Cladosporium fulvum : a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy (PhD) in Plant Sciences at Massey University, Manawatū, New Zealand. EMBARGOED until 31 January 2025

    Icon
    Export to EndNote
    Abstract
    Venturia inaequalis and Cladosporium fulvum are important fungal pathogens of crop species, causing scab and leaf mould disease of apple and tomato, respectively. Resistance to these pathogens is governed by Rvi (apple) and Cf (tomato) resistance (R) genes. These R genes encode immune receptors that recognize specific pathogen virulence factors, termed avirulence (Avr) effectors, to activate plant defenses. Notably, isolates or strains of V. inaequalis and C. fulvum have emerged that can overcome resistance mediated by specific R genes in their respective hosts. To better understand how these pathogens cause disease or overcome resistance, and to monitor the occurrence of resistance-breaking isolates or strains in the field, Avr effectors from V. inaequalis and C. fulvum must be identified and functionally characterized. Using a combined comparative genomics and phenotyping approach based on progeny from a sexual cross between V. inaequalis isolates that differ in their ability to overcome Rvi4 resistance in apple, a strong candidate for the corresponding AvrRvi4 effector gene was identified (Chapter 2). Similarly, using a comparative genomics approach based on in planta-expressed effector candidates from C. fulvum strains that differ in their ability to overcome Cf-9B resistance in tomato, combined with functional assays, the corresponding Avr9B effector gene was identified (Chapter 4). In the resistance-breaking isolates or strains studied, the candidate AvrRvi4 gene was disrupted, while the Avr9B gene had been deleted. Consistent with most fungal Avr effectors and their genes, both the AvrRvi4 candidate and Avr9B are highly expressed in planta, and encode small, secreted cysteine-rich proteins. The AvrRvi4 candidate forms part of an expanded protein family in V. inaequalis, with members predicted to adopt a β sandwich fold similar to structurally characterized fungal effectors. Avr9B, however, is predicted to adopt a novel protein fold. Finally, using a heterologous expression approach, three in planta-expressed candidate effectors from V. inaequalis were found to trigger defense responses in non-host plants (Nicotiana spp.), suggesting they are recognized by R proteins in these species (Chapter 3). Taken together, this thesis has increased our understanding of the molecular mechanisms responsible for the activation and circumvention of resistance by V. inaequalis and C. fulvum, which will in turn direct host cultivar deployment and disease control strategies in the field.
    Date
    2022
    Author
    de la Rosa, Silvia
    Rights
    The Author
    Publisher
    Massey University
    Description
    Embargoed until 31 January 2025
    Following figures removed due to copyright: Figure 1.2 (Jones & Dangl 2006, Fig 1); Figure 1.3 (Cook 2015, Fig 2); Figure 1.4 (He et al 2018, Fig 1) Figure 1.15 (Gessler et al 2006, Fig 1) Figure 1.16 (Kucheryava et al 2008, Fig 2)
    URI
    http://hdl.handle.net/10179/17700
    Collections
    • Theses and Dissertations
    Metadata
    Show full item record

    Copyright © Massey University
    | Contact Us | Feedback | Copyright Take Down Request | Massey University Privacy Statement
    DSpace software copyright © Duraspace
    v5.7-2020.1-beta1
     

     

    Tweets by @Massey_Research
    Information PagesContent PolicyDepositing content to MROCopyright and Access InformationDeposit LicenseDeposit License SummaryTheses FAQFile FormatsDoctoral Thesis Deposit

    Browse

    All of MROCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Copyright © Massey University
    | Contact Us | Feedback | Copyright Take Down Request | Massey University Privacy Statement
    DSpace software copyright © Duraspace
    v5.7-2020.1-beta1