• Login
    View Item 
    •   Home
    • Massey Documents by Type
    • Theses and Dissertations
    • View Item
    •   Home
    • Massey Documents by Type
    • Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Role of cytokinin and ethylene during senescence in broccoli (Brassica oleracea var. Italica) : a thesis submitted for the degree of Doctor of Philosophy at Massey University

    Icon
    View/Open Full Text
    02_whole.pdf (9.644Mb)
    01_front.pdf (1.092Mb)
    Export to EndNote
    Abstract
    Broccoli (Brassica oleracea var. italica) deteriorates rapidly following harvest. The two plant hormones ethylene and cytokinin are known to act antagonistically on harvest-induced senescence in broccoli: ethylene acts by accelerating the process, whereas additional cytokinin delays it. The overall aim of this thesis was to gain a better understanding of how these two hormones control postharvest senescence. The effects of exogenous cytokinin (6-benzyl aminopurine, 6-BAP), 1-aminocyclopropane-1-carboxylic acid (ACC) and sucrose on senescence-associated gene expression were measured in both wild-type plants and transgenic plants harbouring an antisense tomato ACC oxidase gene (pTOM13). Exogenous cytokinin caused both a reduction (BoACO) and an increase (BoACS) in ethylene biosynthetic gene expression as well as reduced expression of genes encoding sucrose transporters and carbohydrate metabolising enzymes, indicating a significant role for cytokinin in the delay of senescence. Transgenic broccoli was produced using Agrobacterium tumefaciens-mediated transformation. Ethylene biosynthesis was targeted via an antisense BoACO2 gene fused to the harvest-induced asparagine synthetase (AS) promoter from asparagus. In addition, broccoli was transformed with constructs harbouring the Agrobacterium tumefaciens isopentenyl transferase (ipt) gene using the senescence-associated SAG12 and floral-associated MYB305 gene promoters to enhance the levels of cytokinin either during senescence or in floral tissue, respectively. The presence of the antisense AS-ACO construct was associated with an increased rate of transformation when compared to control constructs. Physiological analyses of mature plants showed that the antisense AS-ACO gene construct caused delayed senescence in both detached leaves and detached heads. Gene expression analyses of harvested floret tissue from AS-ACO lines showed decreases in transcript levels of senescence marker genes compared to wild-type and transgenic control lines, as well as a reduction in expression of sucrose transporter and carbohydrate metabolising genes, confirming the key role of ethylene in the promotion of senescence. In addition, genes involved with cytokinin biosynthesis and metabolism were isolated by PCR using primers based on Arabidopsis clones. The four broccoli ipt sequences aligned closely to four of the Arabidopsis sequences and were subsequently named BoIPT4, BoIPT5, BoIPT6 and BoIPT7. A cytokinin oxidase clone (BoCKX) was also isolated from broccoli. The four BoIPT genes were expressed in a number of different tissues, suggesting that the different genes may be involved in different biological processes in the plant. BoIPT4 was expressed early and BoCKX expressed late in florets during senescence. A model depicting the regulation of senescence in broccoli through the expression of cytokinin biosynthesis and metabolism genes, and their interaction with ethylene and carbohydrate metabolism is presented and discussed.
    Date
    2003
    Author
    Gapper, Nigel Esteven
    Rights
    The Author
    Publisher
    Massey University
    Description
    Content removed due to copyright: Gapper, N. E., McKenzie, M. J., Christey, M. C., Braun, R. H., Coupe, S. A., Lill, R. E., et al. (2002). Agrobacterium tumefaciens-mediated transformation to alter ethylene and cytokinin biosynthesis in broccoli. Plant Cell, Tissue and Organ Culture, 70(1), 41-50.
    URI
    http://hdl.handle.net/10179/1828
    Collections
    • Theses and Dissertations
    Metadata
    Show full item record

    Copyright © Massey University
    | Contact Us | Feedback | Copyright Take Down Request | Massey University Privacy Statement
    DSpace software copyright © Duraspace
    v5.7-2020.1-beta1
     

     

    Tweets by @Massey_Research
    Information PagesContent PolicyDepositing content to MROCopyright and Access InformationDeposit LicenseDeposit License SummaryTheses FAQFile FormatsDoctoral Thesis Deposit

    Browse

    All of MROCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Copyright © Massey University
    | Contact Us | Feedback | Copyright Take Down Request | Massey University Privacy Statement
    DSpace software copyright © Duraspace
    v5.7-2020.1-beta1