• Login
    View Item 
    •   Home
    • Massey Documents by Type
    • Theses and Dissertations
    • View Item
    •   Home
    • Massey Documents by Type
    • Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Structure, function and quality development in apples : a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Plant Biology at Massey University, Palmerston North, New Zealand

    Icon
    View/Open Full Text
    02_whole.pdf (2.107Mb)
    01_front.pdf (603.1Kb)
    Export to EndNote
    Abstract
    Relationships between structure and function in apples were assessed in a series of experimental studies on different aspects of fruit quality development. A holistic model is presented that describes the major contributing elements. Special attention is directed to the mechanisms underlying the various physiological responses. The study of the relationship between seed set, fruit shape and fruit minerals showed that fruit growth was modular and was strongly influenced by seed distribution and seed growth. This pattern influences the spatial distribution of minerals (e.g. calcium) within the fruit and thus is likely to impact on fruit storage quality. The nature of the developmental stimulus was investigated by in situ applications of the auxin-transport inhibitor, N-(1-Naphthyl)phthalamic acid (NPA). NPA application reduced vessel differentiation in the stalk, enhanced fruit abscission, and led to a reduced seed and flesh growth. Because of the specificity of the action of NPA, the identity of the developmental stimulus is most likely to be auxin. The slowing and eventual stoppage of calcium import by apples is probably due to a decline in the functionality of its xylem. This decline in functionality was shown to be due to a physical disruption of the vascular bundles caused by flesh expansion. The extent of xylem dysfunction was governed by the structure and character of the tissue surrounding a particular bundle type. Flesh expansion also influences the textural properties of the fruit. The spatial distribution of intercellular air within the fruit and the shape and mutual disposition of the flesh cells were assessed using novel techniques. The radial pattern of intercellular air was not uniform indicating features that are likely to impact upon gas transfer within the fruit and thus on storage behaviour. The mechanistic understandings gained in this thesis permit the elucidation of complex interrelations between the processes of fruit quality development. The work offers new insights into the origins of some physiological defects and indicates new lines for future research.
    Date
    2002
    Author
    Dražeta, Lazar R.
    Rights
    The Author
    Publisher
    Massey University
    URI
    http://hdl.handle.net/10179/2003
    Collections
    • Theses and Dissertations
    Metadata
    Show full item record

    Copyright © Massey University
    | Contact Us | Feedback | Copyright Take Down Request | Massey University Privacy Statement
    DSpace software copyright © Duraspace
    v5.7-2020.1-beta1
     

     

    Tweets by @Massey_Research
    Information PagesContent PolicyDepositing content to MROCopyright and Access InformationDeposit LicenseDeposit License SummaryTheses FAQFile FormatsDoctoral Thesis Deposit

    Browse

    All of MROCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Copyright © Massey University
    | Contact Us | Feedback | Copyright Take Down Request | Massey University Privacy Statement
    DSpace software copyright © Duraspace
    v5.7-2020.1-beta1