• Login
    View Item 
    •   Home
    • Massey Documents by Type
    • Theses and Dissertations
    • View Item
    •   Home
    • Massey Documents by Type
    • Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    The influence of diet and intake level on hepatic ammonia metabolism and ureagenesis by the ovine liver : a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Animal Science at Massey University, Palmerston North, New Zealand

    Icon
    View/Open Full Text
    02_whole.pdf (2.393Mb)
    01_front.pdf (680.7Kb)
    Export to EndNote
    Abstract
    The New Zealand agricultural industry is based on the efficient utilisation of fresh forages, a characteristic of which is a high soluble protein content. A large proportion of the ingested protein is highly soluble in the rumen. A significant proportion of the ingested N is removed from the rumen as ammonia with the bulk of this ammonia being removed from the venous blood by the liver for detoxification to urea. Hepatic urea-N production, or ureagenesis, typically exceeds the rate of hepatic ammonia-N extraction, consequently it has been suggested that the shortfall in N required for ureagenesis is contributed by amino acid-N (Parker et al. 1995; Lobley et al., 1995). This study tested the hypothesis that elevated hepatic ammonia extraction would require a concomitant increase in hepatic amino acid catabolism to supply the additional N required for ureagenesis. In order to evaluate the level of rumen ammonia production and consequently the rates of hepatic ammonia extraction, ureagenesis and amino acid catabolism. the following feeding regimens were tested in sheep held indoors in metabolism crates in three separate experiments; Firstly, lucerne pellets (Medicago sativa) were compared with fresh white clover (Trifolium repens), secondly fresh white clover was offered at either a low or high intake and finally the daily allowance of fresh white clover was fed in two 2 hour periods per day. In each experiment, silicone based catheters were surgically inserted into the posterior aorta and the mesenteric (2), portal and hepatic veins. Following a ten day dietary adjustment period and a ten day nitrogen balance, the sheep were infused with para-aminohippurate (pAH) and 15NH4Cl via the mesenteric vein. The pAH was infused to allow the blood flow across the splanchnic tissues to be estimated, whilst the 15NH4Cl was infused to trace hepatic ammonia metabolism to urea. Blood samples were collected to determine the ammonia, urea, oxygen and amino acid concentrations in the mesenteric, portal and hepatic veins, as well as the posterior aorta. Despite similar DM intakes, the nitrogen intake of the sheep fed fresh white clover was 60% higher (P < 0.001) than that of the same animals fed lucerne pellets. The difference in rumen protein fermentation in these two contrasting diets resulted in higher (P < 0.001) rumen ammonia production in the animals offered fresh white clover. There was, however, only a trend (P = 0.072) toward elevated hepatic ammonia extraction in these animals and urea production was not significantly different to the animals fed lucerne pellets. Hepatic amino catabolism was not elevated in the sheep fed fresh white clover, nor was there a significant difference in the proportion of ME intake that was utilised for ureagenesis between the two groups. In the second experiment the DM intakes of the two groups were different (P < 0 001), with the sheep offered the low intake of fresh white clover consuming 807 g DM/d whilst the high intake group consumed 1118 g DM/d. Even with these differences in intake, portal vein ammonia and urea concentrations were similar. Therefore the rate of hepatic ammonia extraction and urea production were also similar between the two intake groups. However, hepatic extraction of 15N-ammonia was higher (P = 0.033) in the high intake group compared to the low intake group. There was no evidence to suggest that the level of hepatic amino acid catabolism increased with intake level, consequently the proportion of ME intake attributed to urea synthesis was similar for the two intake groups When the experimental animals were restricted to two 2 hour feeding periods per day the DM and N intake decreased by 31% from that of the low intake group in the second experiment. There was no significant effect of time after the onset of feeding on portal ammonia or urea concentrations, hepatic ammonia extraction or hepatic urea production. However portal ammonia concentration and consequently hepatic ammonia extraction and urea production tended to be higher 4-6 hours after ingestion of fresh white clover. However this trend was not observed when the 15N tracer data was used to calculate the hepatic ammonia transfer rate. The ammonia, urea and amino acid hepatic transfer values in this experiment were largely comparable to those recorded for the low and high intake treatments in the second experiment. In these studies, there was no evidence of elevated hepatic amino acid catabolism occurring in response to elevated rates of hepatic ammonia extraction and hence ureagenesis. Additionally there was no suggestion that ammonia provided both of the N atoms of the urea molecule. It is concluded that the liver adapted to the changes in dietary nitrogen supply without incurring significant increases in the metabolic cost of ammonia detoxification to urea. However the nutritional challenges presented to the liver may not have been severe enough to induce measurable changes in hepatic ammonia metabolism. A possible mechanism to account for these observations may be that the liver adapted to the changes in nitrogen supply by altering the activity of the primary regulator of the rate of ureagenesis, carbamoyl phosphate synthetase (CPSI).
    Date
    2001
    Author
    Greaney, Kenneth Barry
    Rights
    The Author
    Publisher
    Massey University
    URI
    http://hdl.handle.net/10179/2108
    Collections
    • Theses and Dissertations
    Metadata
    Show full item record

    Copyright © Massey University
    | Contact Us | Feedback | Copyright Take Down Request | Massey University Privacy Statement
    DSpace software copyright © Duraspace
    v5.7-2023.7-7
     

     

    Information PagesContent PolicyDepositing content to MROCopyright and Access InformationDeposit LicenseDeposit License SummaryTheses FAQFile FormatsDoctoral Thesis Deposit

    Browse

    All of MROCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Copyright © Massey University
    | Contact Us | Feedback | Copyright Take Down Request | Massey University Privacy Statement
    DSpace software copyright © Duraspace
    v5.7-2023.7-7