• Login
    View Item 
    •   Home
    • Massey Documents by Type
    • Theses and Dissertations
    • View Item
    •   Home
    • Massey Documents by Type
    • Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Experimental tests of polymer reptation : a thesis presented in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Physics at Massey University

    Icon
    View/Open Full Text
    02_whole.pdf (4.359Mb)
    01_front.pdf (439.0Kb)
    Export to EndNote
    Abstract
    Pulsed Gradient Spin Echo Nuclear Magnetic Resonance (PGSE-NMR) and rheology measurements were used to test whether the dynamics of entangled polymer chains in semidilute solution follow the reptation theory. Nine molar masses from 1 to 20 million daltons at a fixed concentration of 4.96% w/v along with a range of concentrations from 4.96% to 23.58% w/v at fixed molar mass of 3 million daltons were studied using PGSE-NMR techniques. The response to mechanical deformation of five different concentrations from 4.96% to 23.58% w/v at fixed molar mass of 3.9 million daltons was also studied. The distance and time scales accessed by PGSE-NMR were 20 to 1000 nm and 10 to 3000 ms respectively. As a result the mean square segmental motion over three reptation regimes was obtained and the reptation finger print, ⟨(r(t) - r(0))⟩ ~ t1/4, was observed. The resulting concentration and molecular weight scaling laws for the tube disengagement time, center of mass diffusion and the tube diameter, which were obtained in PGSE-NMR and rheology experiments, were found to be in good agreement with the reptation theory and its standard modifications, and a good quantitative fit to the mean square displacement was given by this theory. Local anisotropic motion of polymer chains at the level of the Rouse time was observed using double-PGSE NMR methods. These suggested a possible cooperative motion of polymer chains in entangled environment which challenges the basic assumptions of the reptation theory. Evidence of intra-chain spin diffusion was found. As a consequence relevant corrections incorporating the phenomenon into the PGSE-NMR data had to be made.
    Date
    1999
    Author
    Komlosh, Michal
    Komlosh, Michal
    Rights
    The Author
    Publisher
    Massey University
    URI
    http://hdl.handle.net/10179/2352
    Collections
    • Theses and Dissertations
    Metadata
    Show full item record

    Copyright © Massey University
    | Contact Us | Feedback | Copyright Take Down Request | Massey University Privacy Statement
    DSpace software copyright © Duraspace
    v5.7-2020.1-beta1
     

     

    Tweets by @Massey_Research
    Information PagesContent PolicyDepositing content to MROCopyright and Access InformationDeposit LicenseDeposit License SummaryTheses FAQFile FormatsDoctoral Thesis Deposit

    Browse

    All of MROCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Copyright © Massey University
    | Contact Us | Feedback | Copyright Take Down Request | Massey University Privacy Statement
    DSpace software copyright © Duraspace
    v5.7-2020.1-beta1