• Login
    View Item 
    •   Home
    • Massey Documents by Type
    • Theses and Dissertations
    • View Item
    •   Home
    • Massey Documents by Type
    • Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    PAW - the Protein Analysis Workshop for 2D nuclear magnetic resonance spectroscopy : a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Physics at Massey University, New Zealand

    Icon
    View/Open Full Text
    02_whole_Vol2.pdf (28.84Mb)
    02_whole_Vol1.pdf (28.71Mb)
    01_front.pdf (2.018Mb)
    Export to EndNote
    Abstract
    An X Window-based software package for SGI workstations has been developed to process and assign NMR spectra. Special consideration has been given to the assignment of two-dimensional 1H NMR spectra of proteins. The program combines features from the packages PROSPA [Eccles 1995], EASY [Eccles 1991] and FELIX [Biosym 1995] as well as having its own capabilities. It allows simultaneous display of multiple toolboxes and spectra, which can be flexibly manipulated by mouse operations, command entries, and user-editable macros. NMR spectra can be processed either interactively or with macros containing commands with parameters. A unique filter that combines the exponential and sine-bell functions has been frequently used. A water suppression technique based on fitting averaged time-domain data, as well as an efficient algorithm for calculating fast Fourier transform and Hilbert transform [Eccles 1995] are discussed and implemented. NMR spectral assignment is done interactively in three steps: peak picking, spin-system identification, and sequence-specific assignment. The process utilises three peak lists: a raw-peak list that contains records of all possible peaks in a NOESY spectrum, a diagonal peak list that contains records of peaks that define a curve about which the spectrum is symmetric, and a cross-peak list that contains records of peaks that are assigned. Details of the peak-picking methods are discussed. By reference to a list of diagonal peaks, a common calibration problem caused by Bloch-Siegert shifts [Bloch and Siegert 1940, Ernst 1987] has been minimised. Automatically produced NOE summaries allow a quick identification of peaks that are unassigned or incorrectly assigned. The peak position and integration parameters can be calculated through non-linear curve fitting with Gaussians. NMR data processing and spectral assignment using the package has been completed for Caerin 4.1, a 23-residue protein. Linear-prediction has been applied to increase the spectral resolution. Detailed results for this protein are presented. The NOE summary of the sequential assignments indicates a well-defined secondary structure that is different from Caerin 1.1 [Wong 1996, 1997].
    Date
    1999
    Author
    Lie, Wilford
    Lie, Wilford
    Rights
    The Author
    Publisher
    Massey University
    URI
    http://hdl.handle.net/10179/2369
    Collections
    • Theses and Dissertations
    Metadata
    Show full item record

    Copyright © Massey University
    | Contact Us | Feedback | Copyright Take Down Request | Massey University Privacy Statement
    DSpace software copyright © Duraspace
    v5.7-2023.7-7
     

     

    Information PagesContent PolicyDepositing content to MROCopyright and Access InformationDeposit LicenseDeposit License SummaryTheses FAQFile FormatsDoctoral Thesis Deposit

    Browse

    All of MROCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Copyright © Massey University
    | Contact Us | Feedback | Copyright Take Down Request | Massey University Privacy Statement
    DSpace software copyright © Duraspace
    v5.7-2023.7-7