• Login
    View Item 
    •   Home
    • Massey Documents by Type
    • Theses and Dissertations
    • View Item
    •   Home
    • Massey Documents by Type
    • Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Stereocontrol of intramolecular Diels-Alder reactions : a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Chemistry at Massey University

    Icon
    View/Open Full Text
    02_whole.pdf (5.337Mb)
    01_front.pdf (1.638Mb)
    Export to EndNote
    Abstract
    The use of the intramolecular Diels-Alder (IMDA) reaction in target synthesis has prompted investigation into methods of controlling the stereochemistry of this versatile cycloaddition. Linking the diene and dienophile via an ester-tether is a synthetically facile method of generating a range of precursors for the IMDA reaction and allows rapid access to the hydroisobenzofuranone skeleton. This bicyclic[4.3.0]nonane ring system is common to many natural products, including spongians and several novel steroids. Many of the previous examples of ester-tethered IMDA reactions exhibited a lack of stereoselectivity or were performed on racemic mixtures of starting materials. This thesis describes the synthesis of chiral dienols and tetraenols in enantiomerically pure form from monosaccharides. The esters derived from these alcohols possessed a sterically demanding substituent in the ester tether, and the influence of this bulky dioxolane substituent upon the stereochemical outcome of the IMDA reaction was the subject of this study. The purpose of these investigations was to gain information on stereocontrol in the ester-tethered IMDA reaction and, thus, provide a foundation for the tandem IMDA (TIMDA) reaction. A chiral dienol was synthesised in an enantiomerically pure form from D-glucose and used to prepare Z-methyl, E-methyl and propynoate esters with a dioxolane substituent on the ester tether. The IMDA reactions of these substrates were studied and found to exhibit high levels of diastereoselectivity. In particular, the IMDA reaction of the Z-methyl ester had both extremely high exo/endo selectivity (86:14) and complete π-diastereofacial selectivity. The IMDA reaction of the E-methyl ester was less selective. The diastereoselectivities of the IMDA reactions were explained by the minimised A1.3-strain in the favoured transition state. It has been long contended in the literature that the IMDA reactions of maleate half-esters (carboxylic acids) produced endo adducts whereas the corresponding Z-methyl esters (of the maleate half-esters) produced exo adducts. Comparison of the IMDA reaction of the Z-methyl ester described above with that of its maleate half-ester, disputed this theory. The IMDA reactions of the acid and of the methyl ester exhibited the same diastereoselectivity, with the same ratio of exo:endo adduct in each case. This result prompted an investigation into previous research in this area. It was discovered that the previously made assumptions as to the mechanism of reaction between dienols and maleic anhydride (MA) were suspect. With the purpose of studying the differences in diastereoselectivity and relative rate caused by altering one of two adjacent stereocentres, the results of the model study on the chiral dienol were extended to two diastereomeric tetraenol systems. Both diastereomeric tetraene substrates were synthesised from monosaccharide starting materials; D-glucose and D-galactose. The D-glucose-derived esters were found to undergo IMDA reactions with higher levels of diastereoselectivity than those of the D-galactose-derived esters. In the case of the IMDA reactions of the D-galactose-derived esters, all four of the possible diastereoisomers were produced. In addition to the decreased diastereoselectivity, an increase in the rate of IMDA reaction of the D-galactose-derived substrates was observed when compared to the D-glucose-derived esters. Notably, as with the dienol series, the D-glucose-derived Z-methyl ester exhibited extremely high levels of diastereoselectivity. A disconnection analysis of the cyclopentano perhydroanthrene skeleton of the steroids reveals that a TEMDA reaction would be an elegant method of synthesis. Towards this end, and utilising the information garnered from the model studies on dienol and tetraenol-derived substrates, the ester-tethered TIMDA reaction was investigated. A range of TIMDA precursors, in which a bis-diene (tetraene moiety) and bis-dienophile were linked via an ester tether, were assembled and TIMDA reactions of these substrates were attempted. The most promising area of investigation proved to be a diketone intermediate and future work remains to be performed in this area.
    Date
    1999
    Author
    Williamson, Rachel Marie
    Rights
    The Author
    Publisher
    Massey University
    URI
    http://hdl.handle.net/10179/2389
    Collections
    • Theses and Dissertations
    Metadata
    Show full item record

    Copyright © Massey University
    | Contact Us | Feedback | Copyright Take Down Request | Massey University Privacy Statement
    DSpace software copyright © Duraspace
    v5.7-2020.1-beta1
     

     

    Tweets by @Massey_Research
    Information PagesContent PolicyDepositing content to MROCopyright and Access InformationDeposit LicenseDeposit License SummaryTheses FAQFile FormatsDoctoral Thesis Deposit

    Browse

    All of MROCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Copyright © Massey University
    | Contact Us | Feedback | Copyright Take Down Request | Massey University Privacy Statement
    DSpace software copyright © Duraspace
    v5.7-2020.1-beta1