• Login
    View Item 
    •   Home
    • Massey Documents by Type
    • Theses and Dissertations
    • View Item
    •   Home
    • Massey Documents by Type
    • Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Prediction of cellular ATP generation from foods in the adult human : application to developing specialist weight-loss foods : a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Nutritional Science at Massey University, Palmerston North, New Zealand

    Icon
    View/Open Full Text
    02_whole.pdf (1.652Mb)
    01_front.pdf (113.8Kb)
    Export to EndNote
    Abstract
    For the accurate prediction of the potential ‘available energy’ of a food at the cellular level (i.e. ATP generation from food) it is necessary to be able to predict both the quantity and location of uptake (upper-tract or colon) for each energy-yielding nutrient. The objective was to develop a valid model (‘Combined Model’) for predicting the (potential) ATP available to the body from absorbed nutrients across the total digestive tract. The model was intended for the adult human under conditions where energy intake ≤ energy expenditure and all absorbed nutrients are catabolised. The development of the model involved two parts: (i) the experimental development of a dual in vivo – in vitro digestibility assay (‘dual digestibility assay’) to predict human upper-tract nutrient digestibility, as modelled by the rat upper digestive tract, and colonic digestibility, as predicted by fermenting rat ileal digesta in an in vitro digestion system containing human faecal bacteria; and (ii) the development of a series of mathematical equations to predict the net ATP yielded during the post-absorptive catabolism of each absorbed nutrient at the cellular level. A strong correlation (r=0.953, P=0.047) was found between total tract organic matter digestibility (OMD), as predicted with the newly developed dual in vivo – in vitro digestibility assay and with that determined in a metabolic study with humans for four mixed diets ranging considerably in nutrient content. There were no statistically significant (P>0.05) differences for mean OMD between the predicted and determined values for any of the diets. The Combined Model (dual in vivo – in vitro digestibility assay + stoichiometric predictive equations) was applied to three meal replacement formulations and was successfully able to differentiate between the diets in terms of both energy digestibility and predicted ATP yields. When the energy content of each diet was compared to that of a baseline food (dextrin), some metabolisable energy (ME) models gave considerably different ratios compared to that predicted by the Combined Model. By way of example, for Diet C a ratio of 0.96 (Atwater and FDA models) was found ii versus 0.75 (Combined Model). Thus, the model has practical application for predicting dietary available energy content, particularly in the research and development of specialised weight-loss foods, where it may be more accurate than some current ME models. Uniquely, the Combined Model is able to define a food in terms of ATP content (mol ATP / g food) using recent estimates of cellular P/O ratios and therefore, directly relates dietary energy intake to the quantity and form (ATP) of energy ultimately delivered at the cellular level.
    Date
    2010
    Author
    Coles, Leah Theresa
    Rights
    The Author
    Publisher
    Massey University
    URI
    http://hdl.handle.net/10179/2647
    Collections
    • Theses and Dissertations
    Metadata
    Show full item record

    Copyright © Massey University
    Contact Us | Send Feedback | Copyright Take Down Request | Massey University Privacy Statement
    DSpace software copyright © Duraspace
    v5.7-2020.1
     

     

    Tweets by @Massey_Research
    Information PagesContent PolicyDepositing content to MROCopyright and Access InformationDeposit LicenseDeposit License SummaryTheses FAQFile FormatsDoctoral Thesis Deposit

    Browse

    All of MROCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Copyright © Massey University
    Contact Us | Send Feedback | Copyright Take Down Request | Massey University Privacy Statement
    DSpace software copyright © Duraspace
    v5.7-2020.1