• Login
    View Item 
    •   Home
    • Massey Documents by Type
    • Theses and Dissertations
    • View Item
    •   Home
    • Massey Documents by Type
    • Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Biochemical studies on animal models of ceroid-lipofuscinoses : a thesis presented in partial fulfilment of the requirements for the degree of Doctor in Philosophy in Veterinary Pathology, Massey University

    Icon
    View/Open Full Text
    02_whole.pdf (3.287Mb)
    01_front.pdf (558.7Kb)
    Export to EndNote
    Abstract
    The ceroid-lipofuscinoses are recessively inherited lysosomal storage diseases of children and animals, characterised by brain and retinal atrophy and the accumulation of lipopigment in a variety of cells. A systematic study of isolated lipopigment from an ovine form of the disease had shown the major stored components to be proteinaceous. This thesis presents further characterisation and identification of the stored ovine lipopigment proteins. Separation of the lipopigment proteins by LDS-PAGE showed the presence of the 3.5 kDa and 14.8 kDa proteins noted in earlier studies, and an additional band at 24 kDa. The 14.8 and 24 kDa bands varied between preparations and from different gels of the same isolate. Radioiodination of lipopigment and silver staining of the proteins separated by LDS-PAGE indicated that the 3.5 kDa protein was the dominant protein component. As these proteins were unable to be separated from each other, exploitation of the molar dominance of the 3.5 kDa protein led to its identification by a non traditional sequencing approach. The major stored protein was shown to be the full proteolipid subunit c of the mitochondrial ATP synthase complex. The 14.8 and 24 kDa proteins were shown to be stable oligomers of subunit c. Quantitaion of the sequence data showed that subunit c accounted for at least 50% of the lipopigment mass. No other mitochondrial protein was detected. Analyses of isolated mitochondria showed that they were functionally normal and did not contain excess amounts of subunit c. Subunit c is classified as a proteolipid, due to its lipid-like solubility in chloroform/methanol mixtures. Its storage in lysosome derived lipopigment bodies explained many of the described physical characteristics of lipopigment in the ceroid-lipofuscinoses. Application of the same methodology showed that a bovine, and two distinct canine forms of the ceroid-lipofuscinoses were also subunit c storage diseases. It is postulated that the lesions in the ceroid-lipofuscinoses involve defects in the degradative pathway of subunit c at some point after its incorporation into the inner mitochondrial membrane.
    Date
    1990
    Author
    Martinus, Ryan Dennis
    Rights
    The Author
    Publisher
    Massey University
    URI
    http://hdl.handle.net/10179/3295
    Collections
    • Theses and Dissertations
    Metadata
    Show full item record

    Copyright © Massey University
    Contact Us | Send Feedback | Copyright Take Down Request | Massey University Privacy Statement
    DSpace software copyright © Duraspace
    v5.7-2020.1
     

     

    Tweets by @Massey_Research
    Information PagesContent PolicyDepositing content to MROCopyright and Access InformationDeposit LicenseDeposit License SummaryTheses FAQFile FormatsDoctoral Thesis Deposit

    Browse

    All of MROCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Copyright © Massey University
    Contact Us | Send Feedback | Copyright Take Down Request | Massey University Privacy Statement
    DSpace software copyright © Duraspace
    v5.7-2020.1