• Login
    View Item 
    •   Home
    • Massey Documents by Type
    • Theses and Dissertations
    • View Item
    •   Home
    • Massey Documents by Type
    • Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Human emotion recognition using smart sensors : a thesis submitted in fulfilment of the requirements for the degree of Master of Engineering in Electronics and Communication Engineering, School of Engineering and Advanced Technology, Massey University, Palmerston North, New Zealand, February 2012

    Icon
    View/Open Full Text
    02_whole.pdf (2.036Mb)
    01_front.pdf (110.8Kb)
    Export to EndNote
    Abstract
    Emotions play a vital role in people’s everyday life. It is a mental state that does not arise through free will and is often accompanied by physiological changes. Therefore monitoring these changes is important as they are perceptions of emotional changes and can help in identifying matters of concern at an early stage before they become serious. Emotion recognition has become an important subject when it comes to human-machine interaction. Various methods have been used in the past to detect and evaluate human emotions. The most commonly used techniques include the use of textual information, facial expressions, speech, body gestures and physiological signals. In this project we have developed an emotion recognition system based on information provided by the physiological signals. These signals are obtained from a skin temperature sensor, a heart rate sensor, and a skin conductance sensor. The amplified and filtered signals from the sensors are input into the microcontroller where all the processing takes place. The microcontroller wirelessly transmits data to a computer where it is stored for data analyses and feature extraction for emotion recognition. The four basic emotions observed in this project are happy (excited), sad, angry and neutral (relaxed). The data has been collected from healthy individuals, including both male and female, with ages ranging from 18 to 72 years. K-means clustering algorithm has been used to cluster data into four groups (emotions). A graphical user interface (GUI) has been designed to communicate with the hardware as well as display real-time emotion(s) for the monitored period. The developed system has shown an overall emotion recognition rate of 86.25%.
    Date
    2012
    Author
    Quazi, Muhammad Tauseef
    Rights
    The Author
    Publisher
    Massey University
    URI
    http://hdl.handle.net/10179/3364
    Collections
    • Theses and Dissertations
    Metadata
    Show full item record

    Copyright © Massey University
    | Contact Us | Feedback | Copyright Take Down Request | Massey University Privacy Statement
    DSpace software copyright © Duraspace
    v5.7-2020.1-beta1
     

     

    Tweets by @Massey_Research
    Information PagesContent PolicyDepositing content to MROCopyright and Access InformationDeposit LicenseDeposit License SummaryTheses FAQFile FormatsDoctoral Thesis Deposit

    Browse

    All of MROCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Copyright © Massey University
    | Contact Us | Feedback | Copyright Take Down Request | Massey University Privacy Statement
    DSpace software copyright © Duraspace
    v5.7-2020.1-beta1