• Login
    View Item 
    •   Home
    • Massey Documents by Type
    • Theses and Dissertations
    • View Item
    •   Home
    • Massey Documents by Type
    • Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Identification of rumen methanogens, characterization of substrate requirements and measurement of hydrogen thresholds : a thesis presented in partial fulfilment of the requirements for the degree of Master 's in Microbiology

    Icon
    View/Open Full Text
    02_whole.pdf (4.961Mb)
    01_front.pdf (174.6Kb)
    Export to EndNote
    Abstract
    In New Zealand, exported farmed commodities derived from ruminants make up about one-third of the nation’s economy. However, farming ruminants creates a significant environmental impact by emitting methane which is a by-product of the microbial fermentation occurring in the rumen. Accumulated methane in the atmosphere is considered to be an important contributing factor to global warming and climate change. Methanogenic archaea, collectively called methanogens, inhabiting the rumen are responsible for the production of ruminal methane. These organisms are capable of anaerobically reducing CO2 to CH4, using H2, formate, methanol, a range of methyl-compounds, or acetate as electron-donors. Currently, all known methanogens that have been isolated from a diverse range of habitats are classified into 28 genera and 113 species based on the study of pure cultures and analysis of small subunit rRNA gene sequence data. Less than 10% of these species were isolated from the rumen and these reflect only a small portion of the true rumen methanogen diversity that has been determined by cultivation-independent methods. This project has been derived from the necessity to characterise genome sequences of a greater diversity of rumen methanogens than is currently covered in public culture collections. 14 methanogen strains were isolated as pure cultures and identified based on 16S rRNA and mcrA gene sequences in order to create a comprehensive phylogenetic tree comparing the genetic distances between the newly identified strains and the few named species. Strains 229/11, AbM4, M1, SM9, G16, D5, BRM9, YCM1, ISO3-F5, and A4 were then selected to be characterised for their substrate requirements for growth, by systematically omitting single or multiple components from the growth medium. Finally, the threshold levels of hydrogen, below which the methanogens fail to use it as a substrate, were measured for these strains by gas chromatography. Overall, the H2 thresholds of rumen methanogens fell within the range between 0.5 and 5.8 Pa. Methanobrevibacter, the most predominant group of methanogens occurring in the rumen, had relatively higher H2 thresholds compared to the genus Methanosphaera, a group of methanogens frequently isolated from New Zealand ruminants, and the genus Methanobacterium.
    Date
    2012
    Author
    Kim, Caroline Chae-hyun
    Rights
    The Author
    Publisher
    Massey University
    URI
    http://hdl.handle.net/10179/3540
    Collections
    • Theses and Dissertations
    Metadata
    Show full item record

    Copyright © Massey University
    Contact Us | Send Feedback | Copyright Take Down Request | Massey University Privacy Statement
    DSpace software copyright © Duraspace
    v5.7-27.11.15
     

     

    Tweets by @Massey_Research
    Information PagesContent PolicyDepositing content to MROCopyright and Access InformationDeposit LicenseDeposit License SummaryTheses FAQFile FormatsDoctoral Thesis Deposit

    Browse

    All of MROCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Copyright © Massey University
    Contact Us | Send Feedback | Copyright Take Down Request | Massey University Privacy Statement
    DSpace software copyright © Duraspace
    v5.7-27.11.15