• Login
    View Item 
    •   Home
    • Massey Documents by Type
    • Theses and Dissertations
    • View Item
    •   Home
    • Massey Documents by Type
    • Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Enzyme promiscuity and the origins of cellular innovations : a dissertation presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Biochemistry at Massey University, Albany, New Zealand

    Icon
    View/Open Full Text
    02_whole.pdf (10.40Mb)
    01_front.pdf (131.5Kb)
    Export to EndNote
    Abstract
    Biochemistry textbooks define enzymes as being efficient and highly specific. However, these characteristics are usually associated with a lack of versatility, and therefore, an inability to evolve new functions. In spite of this, it is known that new enzymes can arise rapidly (such as when bacteria evolve antibiotic resistance). One hypothesis proposes that enzymes are actually promiscuous (Jensen, 1976); that is, they are able to carry out secondary reactions, in addition to the one they evolved to catalyze. The goal of this research was to explore the role that promiscuity plays in the origins and evolution of enzyme functions, using Escherichia coli as a model organism. In the first part of this thesis, I report the discovery of two enzymes (alanine racemase and cystathionine ß-lyase) that are reciprocally promiscuous, and are dependent on the cofactor pyridoxal 5’-phosphate (PLP) for activity. In vivo, the cofactor-mediated promiscuous activities of alanine racemase and cystathionine ß-lyase were each successfully improved to near wildtype levels using directed evolution experiments. These results extend Jensen’s hypothesis, and led me to propose that PLP played a significant role in the evolution of new enzymes, in the primordial world. In the second part of the thesis, I developed a comprehensive library-on-library screen to search for E. coli proteins that could mediate improved growth in environments containing either a foreign nutrient or a toxin. Proteins were over-expressed in an attempt to increase their weak, promiscuous activities, and to mimic the common genetic phenomenon of gene amplification. Over-expression of individual proteins conferred improved growth to the host cell in 35% of ~2,000 environments. The findings have important implications for understanding bacterial adaptation to new environments, such as when antibiotic resistance emerges. The ability of promiscuous proteins to drive the emergence of new phenotypes, when their expression is increased, validates the feasibility of the Innovation, Amplification and Divergence (IAD) model for the evolution of new genes (Bergthorsson et al., 2007). Overall, the work described in this thesis demonstrates that protein promiscuity is common, though difficult to predict a priori. My experimental results are consistent with the work of others, in suggesting that promiscuous activities are evolvable. Together, the high frequency and evolvability of promiscuous proteins appear to underpin many different cellular innovations.
    Date
    2012
    Author
    Soo, Valerie Wooi Chee
    Rights
    The Author
    Publisher
    Massey University
    URI
    http://hdl.handle.net/10179/3692
    Collections
    • Theses and Dissertations
    Metadata
    Show full item record

    Copyright © Massey University
    | Contact Us | Feedback | Copyright Take Down Request | Massey University Privacy Statement
    DSpace software copyright © Duraspace
    v5.7-2020.1-beta1
     

     

    Tweets by @Massey_Research
    Information PagesContent PolicyDepositing content to MROCopyright and Access InformationDeposit LicenseDeposit License SummaryTheses FAQFile FormatsDoctoral Thesis Deposit

    Browse

    All of MROCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Copyright © Massey University
    | Contact Us | Feedback | Copyright Take Down Request | Massey University Privacy Statement
    DSpace software copyright © Duraspace
    v5.7-2020.1-beta1