• Login
    View Item 
    •   Home
    • Massey Documents by Type
    • Theses and Dissertations
    • View Item
    •   Home
    • Massey Documents by Type
    • Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A relativistic treatment of atoms and molecules : from relativity to electroweak interaction : a thesis submitted in partial fulfillment of the requirements of the degree of Doctor of Philosophy in Theoretical Physics at Massey University, Auckland, New Zealand

    Icon
    View/Open Full Text
    02_whole.pdf (4.562Mb)
    01_front.pdf (430.7Kb)
    Export to EndNote
    Abstract
    Relativistic quantum chemistry is the relativistic formulation of quantum mechanics applied to many-electron systems, that is to atoms, molecules and solids. It combines the principles of special relativity, which are obeyed by any fundamental physical theory, with the basic rules of quantum mechanics. By construction, it represents the most fundamental theory of all molecular sciences, which describes matter by the action, interaction and motion of the elementary particles. This science is of vital importance to physicists, chemists, material scientists, and biologists with a molecular view of the world A full relativistic treatment of atoms and molecules which includes the quantization of the electromagnetic field is currently one of the most challenging tasks in electronic structure theory. Therefore, relativistic effects in atoms and molecules were studied computationally. A combination of wave function and density functional based methods within a correct relativistic framework proved necessary to achieve accurate results of various atomic and molecular properties. The first part of this thesis deals with investigations in atomic systems including quantum electrodynamic effects in the ionization potentials of a large number of elements K-shell and L-shell ionizations potentials for 268Mt were calculated and static dipole polarizabilities of the neutral group 14 elements were investigated. The second part concentrates on molecular systems including superheavy element monohydrides up to 120H+). In particular, the chemical bonding of the superheavy elements 119 and 120 are investigated for the first time. Electric field gradients of a number of gold and copper compounds were also calculated and the nuclear quadrupole moment of gold and copper determined in good agreement with experiment. Finally, the parity violation energy difference in the chiral molecule bromochlorofluoromethane (CHFCIBr) was investigated by relativistic coupled-cluster theory to provide benchmark results for all future investigations in this field.
    Date
    2009
    Author
    Thierfelder, Christian
    Rights
    The Author
    Publisher
    Massey University
    URI
    http://hdl.handle.net/10179/3859
    Collections
    • Theses and Dissertations
    Metadata
    Show full item record

    Copyright © Massey University
    Contact Us | Send Feedback | Copyright Take Down Request | Massey University Privacy Statement
    DSpace software copyright © Duraspace
    v5.7-2020.1
     

     

    Tweets by @Massey_Research
    Information PagesContent PolicyDepositing content to MROCopyright and Access InformationDeposit LicenseDeposit License SummaryTheses FAQFile FormatsDoctoral Thesis Deposit

    Browse

    All of MROCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Copyright © Massey University
    Contact Us | Send Feedback | Copyright Take Down Request | Massey University Privacy Statement
    DSpace software copyright © Duraspace
    v5.7-2020.1