Geodesics on Lie groups: Euler equations and totally geodesic subgroup

Thumbnail Image
Open Access Location
Journal Title
Journal ISSN
Volume Title
Massey University
The geodesic motion on a Lie group equipped with a left or right invariant Riemannian metric is governed by the Euler-Arnold equation. This paper investigates conditions on the metric in order for a given subgroup to be totally geodesic. Results on the construction and characterisation of such metrics are given. The setting works both in the classical nite dimensional case, and in the category of in nite dimensional Fr echet Lie groups, in which di eomorphism groups are included. Using the framework we give new examples of both nite and in nite dimensional totally geodesic subgroups. In particular, based on the cross helicity, we construct right invariant metrics such that a given subgroup of exact volume preserving di eomorphisms is totally geodesic. The paper also gives a general framework for the representation of Euler-Arnold equations in arbitrary choice of dual pairing.
Euler equations, Totally geodesic subgroups, Di eomorphism groups, Lie groups
Modin, K., Perlmutter, M., Marsland, S., McLachlan, R. (2010), Geodesics on Lie groups: Euler equations and totally geodesic subgroups, Research Letters in the Information and Mathematical Sciences, 14, 79-106