• Login
    View Item 
    •   Home
    • Massey Documents by Type
    • Theses and Dissertations
    • View Item
    •   Home
    • Massey Documents by Type
    • Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Dynamical modelling of the effect of insulin-like growth factor 1 on human cell growth : a thesis presented in fulfilment of the requirements for the degree of Master of Science in Mathematics at Massey University, Albany, New Zealand

    Icon
    View/Open Full Text
    02_whole.pdf (1.764Mb)
    01_front.pdf (88.22Kb)
    Export to EndNote
    Abstract
    Insulin-like Growth Factor-1 (IGF-1) plays a vital role in human growth and development. Interactions with IGF-1 receptors and IGF-1 binding proteins (IGFBPs) regulate IGF-1 function. Boroujerdi et al. (1997) published a mathematical model describing dynamic regulation of IGF-1. We extended the Boroujerdi et al. (1997) model to evaluate the role of cyclic Gly-Pro (CGP) in dynamic regulation of IGF-1 function. Recent research from the Liggins Institute suggests that a metabolite of IGF-1, CGP, may have a role in regulating IGF-1 homeostasis, possibly through competitive binding to IGFBPs. The goal of the research was to understand the kinetics of IGF-1, IGFBPs and CGP, along with their interactions with IGF-1 receptors. This goal and an understanding of how the kinetics mediate IGF-1 function was achieved through consideration of the nonlinear dynamics of the physiology using a modelling approach. The resulting models were directly focused on three central theories. The first is that CGP can either inhibit, stimulate or maintain IGF-1 function based on the extent of receptor binding. The other theories are that CGP regulates IGF-1 through competitive binding to IGFBPs and that CGP does not directly interact with the IGF-1 receptors. Four in vitro models were developed and fitted to experimental data. These included two implicit models which relied on two feedback terms in the equations. The second model was an alteration of the first to produce a reduction in cell number levels for high doses of CGP added to the system. The other two models were explicit models, the first of which could not express the IGF-1 dynamics well (it showed no CGP response). Although the models incorporated these theories, there are other mechanisms influencing the system which will have an effect on the data. Therefore the fourth model was introduced as a simplified version of the third. This was aimed at resembling cell culture situations more closely and was designed to have the receptor bound IGF-1 dependent on IGF-1 and CGP production rates. The models can be used to predict cellular response in an in vitro situation, or as a basis for further research in this field.
    Date
    2013
    Author
    Phillips, Gemma
    Rights
    The Author
    Publisher
    Massey University
    URI
    http://hdl.handle.net/10179/4713
    Collections
    • Theses and Dissertations
    Metadata
    Show full item record

    Related items

    Showing items related by title, author, creator and subject.

    • Icon
      Title:
      The Elusive Contribution of ICT to Productivity Growth in New Zealand: Evidence from an Extended Industry-Level Growth Accounting Model 
      Author:
      Engelbrecht, Hans-Juergen; Xayavong, Vilaphonh; Engelbrecht, Hans-Jürgen
      Date:
      2006-12-17
    • Icon
      Title:
      Heater choice, dampness and mould growth in 26 New Zealand homes: A study of propensity for mould growth using encapsulated fungal spores 
      Author:
      Boulic, M; Phipps, RA; Cunningham, MJ; Cleland, DJ; Fjallstrom, P; Keiko, P; Howden-Champan, P
      Date:
      2015
    • Icon
      Title:
      Mammary Gland Structures Are Not Affected by an Increased Growth Rate of Yearling Ewes Post-Weaning but Are Associated with Growth Rates of Singletons 
      Author:
      Haslin, E; Corner-Thomas, RA; Kenyon, PR; Molenaar, AJ; Morris, ST; Blair, HT
      Date:
      2021-03

    Copyright © Massey University
    | Contact Us | Feedback | Copyright Take Down Request | Massey University Privacy Statement
    DSpace software copyright © Duraspace
    v5.7-2020.1-beta1
     

     

    Tweets by @Massey_Research
    Information PagesContent PolicyDepositing content to MROCopyright and Access InformationDeposit LicenseDeposit License SummaryTheses FAQFile FormatsDoctoral Thesis Deposit

    Browse

    All of MROCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Copyright © Massey University
    | Contact Us | Feedback | Copyright Take Down Request | Massey University Privacy Statement
    DSpace software copyright © Duraspace
    v5.7-2020.1-beta1