• Login
    View Item 
    •   Home
    • Massey Documents by Type
    • Theses and Dissertations
    • View Item
    •   Home
    • Massey Documents by Type
    • Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A spectroscopic analysis of ionic liquid properties : a thesis presented in partial fulfilment of the requirements for the degree of Master of Science in Nanoscience at Massey University, Manawatū, New Zealand

    Icon
    View/Open Full Text
    01_front.pdf (173.0Kb)
    02_whole.pdf (3.355Mb)
    Export to EndNote
    Abstract
    The use of ionic liquids in chemical processes is becoming of increasing interest, due to the low volatility of ionic liquids, and the wide range of properties which they possess. The ability to select properties based on anion and cation choice is also desirable. As such, the development of a solvent reorganization energy scale incorporating both common organic solvents and ionic liquids is useful, as it can be used to determine appropriate ionic liquid replacements of common organic solvents for use in applications. Raman spectroscopy studies have been performed on solutions of the solvatochromic Reichardt’s dye in a selection of common organic and ionic liquid solvents. Due to the solvatochromism of Reichardt’s dye, it behaves differently in solvents with differing properties. As such, the cross-sections of bands in Raman spectra associated with Reichardt’s dye differ between solvents also. Modelling of these cross-sections enables solvent properties to be determined. Absorption spectra were acquired of each sample, and resonance Raman spectra of each sample were recorded at a range of excitation wavelengths. After appropriate data treatment, the absorption and Raman cross-sections were determined, in order to enable the modelling of absorption and Raman crosssection profiles. The modelling of these profiles enabled the solvent reorganization energy of the organic solvents and ionic liquids to be determined, and a relative scale of solvent reorganization prepared. Computational studies were performed in order to better understand the dynamics of Reichardt’s dye in solution. The results from the studies were used to assign the vibrational modes of the Reichardt’s dye to bands in the resonance Raman spectra. From a solvent reorganization standpoint, it was found that common organic solvents may be replaced by ionic liquids of similar properties in applications where solvent volatility is an issue. In addition to this, the information obtained through the use of the solvent reorganization energy scale is able to be directly related to applications of ionic liquids involving electron transfer.
    Date
    2013
    Author
    Way, Ashley Jacqulyne
    Rights
    The Author
    Publisher
    Massey University
    URI
    http://hdl.handle.net/10179/4906
    Collections
    • Theses and Dissertations
    Metadata
    Show full item record

    Copyright © Massey University
    | Contact Us | Feedback | Copyright Take Down Request | Massey University Privacy Statement
    DSpace software copyright © Duraspace
    v5.7-2020.1-beta1
     

     

    Tweets by @Massey_Research
    Information PagesContent PolicyDepositing content to MROCopyright and Access InformationDeposit LicenseDeposit License SummaryTheses FAQFile FormatsDoctoral Thesis Deposit

    Browse

    All of MROCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Copyright © Massey University
    | Contact Us | Feedback | Copyright Take Down Request | Massey University Privacy Statement
    DSpace software copyright © Duraspace
    v5.7-2020.1-beta1