• Login
    View Item 
    •   Home
    • Massey Documents by Type
    • Theses and Dissertations
    • View Item
    •   Home
    • Massey Documents by Type
    • Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Metasecretome phage display : a new approach for mining surface and secreted proteins from microbial communities : a thesis presented in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Biochemistry at Massey University, Palmerston North, New Zealand

    Icon
    View/Open Full Text
    02_whole.pdf (5.018Mb)
    01_front.pdf (285.5Kb)
    Export to EndNote
    Abstract
    The microbial community residing in the reticulo-rumen degrades plant material to provide energy for its ruminant host. The key enzymes and proteins for plant fibre degradation are secreted from the microbial cells, and form part of the ‘metasecretome’ - the collection of cell-surface and secreted proteins that mediate important interactions between the microbiota and their rumen environment. Consequently, the metasecretome represents a valuable repository of bioactivities with potential applications in enhancing fibre digestibility and feed efficiency in ruminant animals, and in improving the depolymerisation of lignocellulosic feedstocks for biofuel production. A new metasecretome phage display approach was developed in this thesis, with the aim to focus sequencing efforts on the metasecretome-encoding component of complex microbial community genomes (metagenomes). This was achieved by combining secretome-selective phage display at a metagenomic scale with next-generation sequence analysis. The ability of this approach to focus metagenome mining onto sequences encoding surface and secreted proteins from the highly fibrolytic rumen plant-adherent microbiota of a dairy cow has been assessed. The metasecretome selection protocol efficiently enriched for a broad spectrum of metasecretome protein coding sequences, both in terms of the taxonomic and functional diversity, and the membrane-targeting signals present. This allowed in silico identification of functionally diverse surface and secreted carbohydrate-active enzymes (CAZymes). In particular, the metasecretome dataset was enriched for sequences encoding putative components characteristic of cellulosomes, the cell-surface multi-protein structures specialised for the degradation of plant fibre. Over one-sixth of the putative CAZymes identified in the metasecretome dataset shared a low sequence similarity with putative CAZymes identified through previous genomic and metagenomic studies; hence this work has identified proteins that potentially have novel carbohydrate-active functions. Affinity screening of the metagenomic phage display library on amorphous cellulose and arabinoxylan significantly enriched for a putative serine/threonine protein kinase. In silico analyses have not associated this protein with recognised carbohydrate binding functions, thus the observed binding may have not been carbohydrate specific. Overall, the methodology developed in this thesis is applicable for the high-throughput metasecretome exploration and is complementary to existing strategies used for mining surface and secreted proteins of complex microbial communities.
    Date
    2014
    Author
    Ciric, Milica
    Rights
    The Author
    Publisher
    Massey University
    URI
    http://hdl.handle.net/10179/5953
    Collections
    • Theses and Dissertations
    Metadata
    Show full item record

    Copyright © Massey University
    Contact Us | Send Feedback | Copyright Take Down Request | Massey University Privacy Statement
    DSpace software copyright © Duraspace
    v5.7-2020.1
     

     

    Tweets by @Massey_Research
    Information PagesContent PolicyDepositing content to MROCopyright and Access InformationDeposit LicenseDeposit License SummaryTheses FAQFile FormatsDoctoral Thesis Deposit

    Browse

    All of MROCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Copyright © Massey University
    Contact Us | Send Feedback | Copyright Take Down Request | Massey University Privacy Statement
    DSpace software copyright © Duraspace
    v5.7-2020.1