• Login
    View Item 
    •   Home
    • Massey Documents by Type
    • Theses and Dissertations
    • View Item
    •   Home
    • Massey Documents by Type
    • Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Reconstructing debris transport pathways on constructional ridges : a thesis presented in partial fulfillment of the requirements for the degree of Master of Science in Quaternary Science at Massey University, Palmerston North, New Zealand

    Icon
    View/Open Full Text
    02whole.pdf (6.916Mb)
    01front.pdf (171.2Kb)
    Export to EndNote
    Abstract
    It is generally accepted that Mt Ruapehu, Tongariro National Park, New Zealand, was heavily glaciated during the Pleistocene. Eight small glaciers can still be found on the summit of this active volcano. However, the glaciers have been retreating at a fast rate during the last few centuries. The scientific community has placed its main focus on the volcanic aspects of the region. Although most authors refer to the landforms that appear to be of glacial origin as ‘moraines’, no actual glacial studies have been undertaken so far to provide the necessary evidence that is needed to support this hypothesis. The aim of this study is to use established field techniques in glacial geomorphology to (1) identify the extent of glacial deposits using diagnostic criteria and (2) to reconstruct the transport pathways of the Wahianoa Glacier. Four main diagnostic criteria have been used: clast morphology, macrofabrics, grain size distribution and the surface texture of grains. The Wahianoa valley has a very pronounced U-shape and is likely to be of glacial origin. The valley consists of two elongate debris ridges that are made out of unconsolidated, poorly sorted diamict of varying lithologies. This study has identified that the activity and the composition of the volcano has lead to complex glacial processes. Glacial ice has advanced over a deformable bed and the glacier itself was probably extensively covered by supraglacial debris. The area has been identified as a pre-historic pathway for lahars and the volcano erupts frequently to produce fresh volcanic deposits. As the active vent has changed its position during the eruptive history of the volcano, the quantity and the location of the source rock that fed the glacier has varied greatly. This study is an initial attempt at unfolding the glacial history of Mt Ruapehu. This is based on field analysis of glacigenic sediments, rather than topographic and aerial photo analysis. The results show great complexity and the potential for further studies of other moraine systems on Mt Ruapehu.
    Date
    2007
    Author
    Mandolla, Stephanie
    Rights
    The Author
    Publisher
    Massey University
    URI
    http://hdl.handle.net/10179/621
    Collections
    • Theses and Dissertations
    Metadata
    Show full item record

    Copyright © Massey University
    Contact Us | Send Feedback | Copyright Take Down Request | Massey University Privacy Statement
    DSpace software copyright © Duraspace
    v5.7-2020.1
     

     

    Tweets by @Massey_Research
    Information PagesContent PolicyDepositing content to MROCopyright and Access InformationDeposit LicenseDeposit License SummaryTheses FAQFile FormatsDoctoral Thesis Deposit

    Browse

    All of MROCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Copyright © Massey University
    Contact Us | Send Feedback | Copyright Take Down Request | Massey University Privacy Statement
    DSpace software copyright © Duraspace
    v5.7-2020.1