• Login
    View Item 
    •   Home
    • Massey Documents by Type
    • Theses and Dissertations
    • View Item
    •   Home
    • Massey Documents by Type
    • Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Predicting reintroduction outcomes using data from multiple populations : a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Ecology at Massey University, Palmerston North, New Zealand

    Icon
    View/Open Full Text
    01_front.pdf (129.9Kb)
    02_whole.pdf (1.586Mb)
    Export to EndNote
    Abstract
    Predicting reintroduction outcomes before populations are released is inherently challenging. Reintroductions typically involve small data sets from specific locations, making it difficult to know whether results from individual case studies are more widely applicable. However, a number of species have now been reintroduced to multiple sites, providing an opportunity to move beyond the inferences possible from single-site studies. I present a novel approach where data from multiple reintroduced populations are modelled simultaneously, allowing a priori predictions that account for random variation among sites to be made before new reintroductions are attempted. I construct models using data from multiple reintroductions of the North Island robin (Petroica longipes) to identify important factors influencing population establishment, vital rates and growth across existing reintroduction sites, and use the best supported models to make predictions for a candidate reintroduction site under alternative management scenarios. My results indicate that rat tracking rate (an index of rat density) and the surrounding landscape at reintroduction sites are important for both establishment and growth of reintroduced robin populations, and that sourcing founders from habitat similar to that at the reintroduction site (forest type and predators present) is also important for post-release establishment. I then extend the multi-population approach to integrate data from multiple species, and use the resulting model to predict growth of a reintroduced population at a range of predator densities when the candidate species for reintroduction (the North Island saddleback, Philesturnus rufusater) has never been observed in the presence of those predators. I predict saddleback population growth at different rat tracking rates using the relationship modelled for North Island robins, with the strength of the relationship adjusted to account for the greater vulnerability of saddlebacks to predation. The relative vulnerability to predation of saddlebacks (and 24 other New Zealand forest bird species) is estimated by measuring range contraction following the arrival of introduced mammalian predators on New Zealand’s mainland. My results suggest that saddlebacks could be successfully reintroduced to sites with very low rat densities. This study illustrates how an integrated approach to modelling reintroductions improves the information available to managers, providing guidance about site suitability and appropriate management measures. For species reintroduced to multiple sites, integrated models provide an ideal opportunity to develop understanding over time of the key drivers of reintroduction success.
    Date
    2014
    Author
    Parlato, Elizabeth
    Rights
    The Author
    Publisher
    Massey University
    URI
    http://hdl.handle.net/10179/6217
    Collections
    • Theses and Dissertations
    Metadata
    Show full item record

    Copyright © Massey University
    | Contact Us | Feedback | Copyright Take Down Request | Massey University Privacy Statement
    DSpace software copyright © Duraspace
    v5.7-2020.1-beta1
     

     

    Tweets by @Massey_Research
    Information PagesContent PolicyDepositing content to MROCopyright and Access InformationDeposit LicenseDeposit License SummaryTheses FAQFile FormatsDoctoral Thesis Deposit

    Browse

    All of MROCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Copyright © Massey University
    | Contact Us | Feedback | Copyright Take Down Request | Massey University Privacy Statement
    DSpace software copyright © Duraspace
    v5.7-2020.1-beta1