• Login
    View Item 
    •   Home
    • Massey Documents by Type
    • Theses and Dissertations
    • View Item
    •   Home
    • Massey Documents by Type
    • Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    How does the interaction between the Filamin A repeat 10 domain and F-actin lead to severe OPD skeletal disorders? : a thesis presented in partial fulfilment of the requirements for the degree of Master of Science in Biochemistry at Massey University, Palmerston North, New Zealand

    Icon
    View/Open Full Text
    01_front.pdf (329.9Kb)
    02_whole.pdf (3.658Mb)
    Export to EndNote
    Abstract
    The cytoskeleton network allows cells to differentiate, divide, and move in response to the external environment creating a mechanoprotection system against cell stress. The actin cytoskeleton is stabilised and tightly regulated by various actin-binding proteins, one of which are the family of Filamin (FLN) proteins that crosslink F-actin into three-dimensional networks. Filamins also link the actin cytoskeleton to the cellular membrane through interactions with transmembrane proteins and function as a molecular scaffold for signalling molecules. In addition to an actin binding domain, each monomer contains a rod region of 24 immunoglobulin-like repeat domains with dimerisation of the monomers occurring at repeat 24. The human filamin family contains three FLN isoforms; FLNA, FLNB, and FLNC which are differentially expressed where FLNA is identified as the dominant isoform located on the X-chromosome essential for mammalian development. Mutations in Filamin A (FLNA) have been identified to cause distinctly different human diseases affecting the central nervous system, vascular system, or skeletal muscles; however, the molecular mechanisms of FLNA leading to these diseases remain unclear. Mutations cluster in distinct FLNA domains, suggesting their functional importance for mediating correct functions. Mutations in the FLNA repeat 10 domain are correlated with severe forms of the skeletal disorders Otopalatodigital syndrome spectrum disorders (OPD) thought to be due to an altered or gain-of-function phenotype. The aim of this study was to provide an insight into the biochemical properties of FLNA repeat 10 domain by better understanding how mutations in this domain lead to OPD. Initially, recombinant wildtype (Wt) and mutant (V1249A and A1188T) FLNA repeat 10 domain proteins (FLNAR10) were purified then compared by in vitro biochemical studies to investigate secondary structure, stability, and affinity towards F-actin. The FLNAR10 protein was revealed to have relatively weak binding affinity towards F-actin, consistent with being an additional contributor in the filamin protein to bind F-actin. Mutations in the FLNAR10 protein exhibited a slight increase in affinity towards F-actin, accompanied by a slight reduction of thermostability in comparison to the Wt protein, but no significant changes in the secondary structure were observed. This slight increase in the affinity of the mutant FLNA repeat 10 proteins towards F-actin is consistent with a gain-of function mechanism for the disease phenotype. Overall, these results contribute towards a better understanding of the FLNA function, providing further evidence towards a gain-of function mechanism for OPD.
    Date
    2014
    Author
    Barzak, Fareeda Maged
    Rights
    The Author
    Publisher
    Massey University
    URI
    http://hdl.handle.net/10179/6328
    Collections
    • Theses and Dissertations
    Metadata
    Show full item record

    Copyright © Massey University
    | Contact Us | Feedback | Copyright Take Down Request | Massey University Privacy Statement
    DSpace software copyright © Duraspace
    v5.7-2020.1-beta1
     

     

    Tweets by @Massey_Research
    Information PagesContent PolicyDepositing content to MROCopyright and Access InformationDeposit LicenseDeposit License SummaryTheses FAQFile FormatsDoctoral Thesis Deposit

    Browse

    All of MROCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Copyright © Massey University
    | Contact Us | Feedback | Copyright Take Down Request | Massey University Privacy Statement
    DSpace software copyright © Duraspace
    v5.7-2020.1-beta1