• Login
    View Item 
    •   Home
    • Massey Documents by Type
    • Theses and Dissertations
    • View Item
    •   Home
    • Massey Documents by Type
    • Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    ATM and p400 : characterisation of a novel interaction between a DNA repair enzyme and a chromatin remodeler : a thesis presented to Massey University in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Biochemistry

    Icon
    View/Open Full Text
    01_front.pdf (228.9Kb)
    02_whole.pdf (5.436Mb)
    Export to EndNote
    Abstract
    The ability to maintain genomic integrity prevents unrestricted cell proliferation and the progression of cancer. DNA repair pathways such as the DNA double-strand break (DSB) response are essential in maintaining this integrity. This system requires activation of the serine/threonine kinase ataxia telangiectasia mutated (ATM) through acetylation by TIP60, a histone acetyl transferase, and subsequent ATM autophosphorylation. During DNA repair, activated ATM phosphorylates the histone variant H2AX several kilobases either side of the break site. This phosphorylation acts a signal for additional repair proteins and chromatin remodeling complexes which repairs DNA. In a previous study, H2AX phosphorylation was induced through the over expression of TIP60 or the SWI3-ADA2-N-CoR-TFIIIB (SANT) domain of p400. It was hypothesised that over expressed TIP60 or SANT domain was able to sequester a putative negative regulator from the ATM-TIP60 complex and artificially induce activation. This study aimed to investigate if a single domain of TIP60 or if a single helix from the three helix SANT domain was responsible for the activation of the ATM-TIP60 complex. Here, the ability of the chromo domain and zinc domain of TIP60 individually and the combined zincHat domain of TIP60 to induce H2AX phosphorylation as well as three helix deletion mutants of the SANT domain of p400 was examined. While all constructs were able to be expressed in human cell lines, the induction of H2AX was variable and non-reproducible. ATM belongs to the phosphatidylinositol 3-kinase-related kinase family (PIKK). Members of the PIKK family show domain homology, where the domain of one protein is replaced with the homologous domain of another member and the function of the protein is not altered. As p400 has been previously shown to interact with TIP60 and also Transformation/transcription domain-associated protein (TRRAP), a member of the PIKK family, it was hypothesised that p400 could interact with ATM (which also interacts with TIP60). This study confirms this novel interaction between ATM and p400 through the use of co-immunoprecipitation and protein localisation using confocal microscopy. This study provides a platform to further investigate the involvement of an ATM-p400 complex during DNA repair.
    Date
    2014
    Author
    Smith, Rebecca Jane
    Rights
    The Author
    Publisher
    Massey University
    URI
    http://hdl.handle.net/10179/6960
    Collections
    • Theses and Dissertations
    Metadata
    Show full item record

    Copyright © Massey University
    | Contact Us | Feedback | Copyright Take Down Request | Massey University Privacy Statement
    DSpace software copyright © Duraspace
    v5.7-2020.1-beta1
     

     

    Tweets by @Massey_Research
    Information PagesContent PolicyDepositing content to MROCopyright and Access InformationDeposit LicenseDeposit License SummaryTheses FAQFile FormatsDoctoral Thesis Deposit

    Browse

    All of MROCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Copyright © Massey University
    | Contact Us | Feedback | Copyright Take Down Request | Massey University Privacy Statement
    DSpace software copyright © Duraspace
    v5.7-2020.1-beta1