Heat-induced interactions of [beta]-lactoglobulin, [alpha]-lactalbumin and casein micelles : a thesis presented in partial fulfilment of the requirements for the degree of Masters of Education in Food Technology at Massey University

Loading...
Thumbnail Image
Date
1996
DOI
Open Access Location
Journal Title
Journal ISSN
Volume Title
Publisher
Massey University
Rights
The Author
Abstract
The denaturation and aggregation of β-lactoglobulin and α-lactalbumin were studied in the following mixtures, designed to simulate the protein concentrations and ionic environment in normal skim milk. 1. β-lactoglobulin (0.4% w/v), 2. α-lactalbumin (0.15% w/v), 3. β-lactoglobulin (0.4% w/v) and casein micelles (~ 2.6% w/v), 4. α-lactalbumin (0.15% w/v) and casein micelles (~ 2.6% w/v), 5. β-lactoglobulin (0.4% w/v) and α-lactalbumin (0.15% w/v) and 6. β-lactoglobulin (0.4% w/v), α-lactalbumin (0.15% w/v) and casein micelles (~ 2.6% w/v) Proteins were dissolved in SMUF, pH 6.7, and heated at 80 and 95°C for various times and centrifuged at 100,000 g for 60 min. The supernatants and pellets obtained were analysed using gel electrophoresis under non-dissociating (Native-PAGE in the absence of dissociating and reducing agents), dissociating but non-reducing (SDSNR-PAGE) and dissociating and reducing conditions (SDSR-PAGE). When β-lactoglobulin was heated alone and examined by native-PAGE, the quantity of native protein decreased with increasing heating time at 80°C. Addition of α-lactalbumin to the β-lactoglobulin solution increased the loss of β-lactoglobulin during the initial stages of heating. Addition of casein micelles to the β-lactoglobulin solution markedly increased the loss of native β-lactoglobulin throughout the heating period. The loss of β-lactoglobulin from the mixture containing β-lactoglobulin, α-lactalbumin and casein micelles was similar to that from the mixture of β-lactoglobulin and casein micelles. The loss of β-lactoglobulin from these protein mixtures could be described by second-order reaction kinetics. Heating these mixtures at 95°C caused very rapid loss of native β-lactoglobulin, but the effects of the addition of casein micelles and α-lactalbumin were generally similar to those observed at 80°C. When α-lactalbumin was heated at 80°C either alone or in the presence of casein micelles, there was only a slight loss of the native α-lactalbumin. However the corresponding losses of native α-lactalbumin were considerable greater on heating at 95°C. At both temperatures, the addition of β-lactoglobulin increased the rate of loss of α-lactalbumin substantially. The addition of casein micelles to the mixture of α-lactalbumin and β-lactoglobulin had little further effect on the loss of native α-lactalbumin. The rates of loss of α-lactalbumin at 95°C in all mixtures could be adequately described by first-order kinetics. When β-lactoglobulin was heated either alone or in the presence of casein micelles and examined by SDSNR-PAGE, the loss of SDS-monomeric β-lactoglobulin was less than the loss of native β-lactoglobulin. In contrast, when α-lactalbumin was added to β-lactoglobulin or β-lactoglobulin and casein micelles mixture, the loss of SDS-monomeric β-lactoglobulin was comparable to that of native β-lactoglobulin. The difference between native and SDS-monomeric β-lactoglobulin represents aggregates that are linked by non-covalent (hydrophobic) interactions. Thus the protein mixtures containing α-lactalbumin, contain no or little non-covalently linked β-lactoglobulin aggregates, and consequently, all the β-lactoglobulin aggregates would be disulphide linked. The results for the loss of SDS-monomeric and native α-lactalbumin at 95°C showed that both non-covalent and disulphide-linked aggregates of α-lactalbumin were present in all the protein mixtures studied. When β-lactoglobulin solution was heated at 95°C, large aggregates were formed which could be sedimented at 100,000 g for 60 min. Addition of casein micelles to β-lactoglobulin solution caused greater sedimentation of β-lactoglobulin. Similar results were obtained when the mixture containing β-lactoglobulin, α-lactalbumin and casein micelles was heated at 95°C. In contrast, the mixture containing β-lactoglobulin and α-lactalbumin behaved in a similar manner to β-lactoglobulin alone. When α-lactalbumin was heated at 95°C alone or in the presence of casein micelles, it did not interact to form large sedimentable aggregates. However when β-lactoglobulin was added to the above protein solutions, there was a considerable increase in sedimentation of α-lactalbumin.
Description
Keywords
Whey, Protein denaturation, [beta]-lactoglobulin, Skim milk, Casein
Citation