• Login
    View Item 
    •   Home
    • Massey Documents by Type
    • Theses and Dissertations
    • View Item
    •   Home
    • Massey Documents by Type
    • Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Formalist features determining the tempo and mode of evolution in Pseudomonas fluorescens SBW25 : a thesis submitted in partial fulfilment of the requirements for the degree of Ph.D. in Evolutionary Genetics at Massey University, Auckland, New Zealand

    Icon
    View/Open Full Text
    01_front.pdf (62.27Kb)
    02_whole.pdf (6.973Mb)
    Export to EndNote
    Abstract
    In order to explain the adaptive process, it is necessary to understand the generation of heritable phenotypic variation. For much of the history of evolutionary biology, the production of phenotypic variation was believed to be unbiased, and adaptation the primary outcome of selection acting on randomly generated variation (mutation). While true, ‘internal’ features of organisms may also play a role by increasing the rate of mutation at specific loci, or rendering certain genes better able to translate mutation into phenotypic variation. This thesis, using a bacterial model system, demonstrates how these internal features – localised mutation rates and genetic architectures – can influence the production of phenotypic variation. Previous work involving the bacterium Pseudomonas fluorescens SBW25 has shown that mutations at three loci, wsp, aws and mws, can cause the adaptive wrinkly spreader (WS) phenotype. For each locus, the causal mutations are primarily in negative regulators of di-guanylate cyclase (DGC) activity, which readily convert mutation into the WS phenotype. Mutations causing WS at other loci were predicted to arise, but to do so with less frequent types of mutation. The data presented in this thesis confirms this prediction. My work began with the identification and characterisation of a single rare WS-causing mutation: an in-frame deletion that generates a translational fusion of genes fadA and fwsR. The fusion couples a DGC (encoded by fwsR) to a membrane-spanning domain (encoded by fadA) causing relocalisation of the DGC to the cell membrane and the WS phenotype. This is one of the few examples of adaptation caused by gene fusion and protein relocation in a realtime evolution experiment. I next took an experimental evolution approach to isolate further rare WS types and characterized these, revealing a range of rarely taken mutational pathways to WS. Lastly, I describe an example of extreme molecular parallelism, in which a cell chaining phenotype is caused – without exception – by a single nucleotide substitution within the gene nlpD, despite multiple mutational pathways to this phenotype. Characterisation of different nlpD mutants suggests this molecular parallelism is caused by a high local mutation rate, possibly related to the initiation of transcription within this gene.
    Date
    2015
    Author
    Farr, Andrew David
    Rights
    The Author
    Publisher
    Massey University
    URI
    http://hdl.handle.net/10179/7215
    Collections
    • Theses and Dissertations
    Metadata
    Show full item record

    Copyright © Massey University
    | Contact Us | Feedback | Copyright Take Down Request | Massey University Privacy Statement
    DSpace software copyright © Duraspace
    v5.7-2020.1-beta1
     

     

    Tweets by @Massey_Research
    Information PagesContent PolicyDepositing content to MROCopyright and Access InformationDeposit LicenseDeposit License SummaryTheses FAQFile FormatsDoctoral Thesis Deposit

    Browse

    All of MROCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Copyright © Massey University
    | Contact Us | Feedback | Copyright Take Down Request | Massey University Privacy Statement
    DSpace software copyright © Duraspace
    v5.7-2020.1-beta1