• Login
    View Item 
    •   Home
    • Massey Documents by Type
    • Theses and Dissertations
    • View Item
    •   Home
    • Massey Documents by Type
    • Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Factors influencing mixing and mass transfer in the small intestine : a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Digestive Biomechanics (Physical Process of Digestion) at Massey University, Turitea, New Zealand

    Icon
    View/Open Full Text
    01_front.pdf (224.3Kb)
    02_whole.pdf (8.087Mb)
    Export to EndNote
    Abstract
    This work sought to determine the factors influencing mixing and mass transfer in the small intestine. Specifically, the work was focussed on the gut periphery (i.e. perivillous region) of the terminal ileum in the brushtail possum (Trichusurus vulpecula). The salient questions to answer were; 1. What are the microrheological properties and disposition of mucus in the perivillous space? 2. What are the disposition and movements of the mucosa and the associated villi during postprandial gut motility patterns of pendular contractions? 3. Are villi rigid structures during physiological levels of lumen flow? The following three main experimental works of this thesis were all conducted using live gut wall samples maintained ex vivo. In addition, computational models were developed incorporating the novel findings detailed in this thesis to assist in visualizing mixing and mass transfer in the perivillous space. 1. The properties of the perivillous fluid environment were assessed by multiple-particle-tracking of the Brownian motion of fluorescent microbeads on gut samples. 2. The movements and disposition of the mucosal surface and associated villi during pendular contractions were observed for whole lengths of everted gut samples. 3. Flow velocities in the perivillous space of gut samples were determined by microparticle-image-velocimetery of microbeads. The movement of villi in response to physiological levels of lumen flow were quantified by image analysis. The following are the main findings and implications of the work. 1. The perivillous fluid environment consisted of discrete viscoelastic bodies dispersed within a watery Newtonian phase. Such characteristics of the fluid environment were thought to be conducive for mixing and mass transfer, and likened to the processes of gel filtration. 2. Gut pendular contractions generated transient mucosal microfolds, which resulted in the formation of periodic congregation and separation of villous tips. Such a mechanism was predicted (using computational simulations) to augment mixing and mass transfer of nutrients at the gut periphery. 3. Villi were rigid structures, which were more prone to pivot than to bend, while intervillous fluid was predicted to be quasi-static during physiological levels of lumen flow. Such a feature of villi supports a perivillous mixing and mass transfer mechanism driven by mucosal microfolding In conclusion, mixing and mass transfer in the perivillous space are governed by more complex dynamics than previously assumed and by factors previously unknown.
    Date
    2015
    Author
    Lim, Ian Yuen Feung
    Rights
    The Author
    Publisher
    Massey University
    URI
    http://hdl.handle.net/10179/7554
    Collections
    • Theses and Dissertations
    Metadata
    Show full item record

    Copyright © Massey University
    Contact Us | Send Feedback | Copyright Take Down Request | Massey University Privacy Statement
    DSpace software copyright © Duraspace
    v5.7-2020.1
     

     

    Tweets by @Massey_Research
    Information PagesContent PolicyDepositing content to MROCopyright and Access InformationDeposit LicenseDeposit License SummaryTheses FAQFile FormatsDoctoral Thesis Deposit

    Browse

    All of MROCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Copyright © Massey University
    Contact Us | Send Feedback | Copyright Take Down Request | Massey University Privacy Statement
    DSpace software copyright © Duraspace
    v5.7-2020.1