• Login
    View Item 
    •   Home
    • Massey Documents by Type
    • Theses and Dissertations
    • View Item
    •   Home
    • Massey Documents by Type
    • Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Assessment of the transport and transformation of nitrogen in the unsaturated and saturated zones under two dairy farms in the Manawatu River catchment : a thesis presented in partial fulfilment of the requirements for the degree of Master in Environmental Management at the Institute of Agriculture and Environment, Massey University, Palmerston North, Manawatu, New Zealand

    Icon
    View/Open Full Text
    01_front.pdf (121.7Kb)
    02_whole.pdf (5.334Mb)
    Export to EndNote
    Abstract
    The importance of dairy farming in New Zealand is reflected in the country’s export and gross domestic product earnings. While the economic and food production benefits are evident, there is an increasing concern about the effects of excess nutrient runoff on water quality and ecosystem health. Studies on the transport and transformation of nutrients, specifically nitrogen, are limited or mainly focused on the management and reduction of nutrient losses from the root zone. This is also the case in the Manawatu River catchment of New Zealand. The goal of this study was to assess the transport and transformation of nitrogen in the unsaturated (below the root zone) and saturated zones using field measurements, a tracer test, and identification of redox conditions in the shallow groundwater. Two sites were chosen in the Manawatu River catchment: Site 1 (Massey Dairy Farm No. 1, Palmerston North) and Site 2 (Te Matai Road, Whakarongo). Soil-water and groundwater were extracted using 12 porous cups (0.3, 0.6, 1.0, 2.0 m bgl) and four piezometers (5.8, 6.3, 7.4, 8.7 m bgl) installed at Site 1, and six piezometers (12, 18, 33, 51, 66, 87 m bgl) installed at Site 2. The extracted water samples were analysed for nitrate-nitrogen (NO3-N) and other water quality parameters. The average NO3-N concentrations in the unsaturated zone (0.3 – 2.0 m bgl) decreased with depth. At Site 1, a tracer test was conducted in November, 2013, using an application of urea (467 kg N/ha) and bromide (206 kg Br/ha). After fertiliser application, NO3-N concentrations increased in the root zone. The bromide reached only until the 2-m depth porous cup in January, 2014, after a total irrigation depth of 478 mm. The early appearance of bromide in the 0.3 m depth root zone suggested preferential flow, a pathway that speeds up transport of potential contaminants in the groundwater. The observed data of NO3-N, dissolved oxygen (DO), iron, manganese, and sulphate were utilised to assess the redox condition in groundwater at both sites. The decreasing NO3-N concentrations with increasing depth indicated dilution and/or the occurrence of denitrification in the groundwater. The groundwater redox conditions were mixed oxic-anoxic in the 5.8 – 51 m bgl and mainly anoxic below 51 m groundwater depth.
    Date
    2015
    Author
    Espanto, Patrick Benson B
    Rights
    The Author
    Publisher
    Massey University
    URI
    http://hdl.handle.net/10179/8322
    Collections
    • Theses and Dissertations
    Metadata
    Show full item record

    Copyright © Massey University
    Contact Us | Send Feedback | Copyright Take Down Request | Massey University Privacy Statement
    DSpace software copyright © Duraspace
    v5.7-2020.1
     

     

    Tweets by @Massey_Research
    Information PagesContent PolicyDepositing content to MROCopyright and Access InformationDeposit LicenseDeposit License SummaryTheses FAQFile FormatsDoctoral Thesis Deposit

    Browse

    All of MROCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Copyright © Massey University
    Contact Us | Send Feedback | Copyright Take Down Request | Massey University Privacy Statement
    DSpace software copyright © Duraspace
    v5.7-2020.1