• Login
    View Item 
    •   Home
    • Massey Documents by Type
    • Theses and Dissertations
    • View Item
    •   Home
    • Massey Documents by Type
    • Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Identification and functional characterisation of a novel surface protein complex of Lactobacillus rhamnosus : a thesis presented in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Microbiology and Genetics at Massey University, Manawatu Campus, New Zealand

    Icon
    View/Open Full Text
    01_front.pdf (164.0Kb)
    02_whole.pdf (4.025Mb)
    Export to EndNote
    Abstract
    Proteins are the most diverse structures on bacterial surfaces; hence they are candidates for species- and strain-specific interactions of bacteria with the host, environment and other microorganisms. In probiotic bacteria, some surface and secreted proteins mediate interactions with the host and may consequently contribute to the health-promoting effects. However, a limited fraction of surface-associated proteins from probiotic bacteria have been functionally characterised to date. A secreted protein of Lactobacillus rhamnosus HN001, SpcA, containing two bacterial immunoglobulin-like domains type 3 (Big-3) and a domain distantly related to plant pathogen response domain 1 (PR-1-like), was previously shown to bind to HN001 cells, however the nature of its ligand on the surface of the cells was unknown. In this study, a series of binding assays first demonstrated that SpcA binds to a cell wall anchored protein of HN001. Next, the SpcA-“docking” protein, named SpcB, was identified using phage display. SpcB is a 3275-residue cell-surface protein that has all the features of large glycosylated serine-rich adhesins/fibrils from Gram-positive bacteria, including the hallmark glycoprotein signal sequence motif KxYKxGKxW and the cell wall anchor motif LPxTG. The spcA and spcB genes are located in a gene cluster, spcBCDA, which is present in 94 out of 100 strains of L. rhamnosus species and some strains of L. casei and L. paracasei whose genome sequences have been determined, but was absent from other Lactobacillus clades. To confirm the role of SpcB as the SpcA anchor and investigate the roles of these two proteins in surface properties of probiotic L. rhamnosus strains HN001 and GG, stable double-crossover mutations of these two genes were constructed. Binding assays to L. rhamnosus mutant cells confirmed dependence on SpcB in both GG and HN001 strains. Comparison of the wild-type and mutant surface properties suggested that SpcB in GG interferes with biofilm formation and aggregation, while it might contribute to the protective effect against TNFa-mediated disruption of the polarised Caco-2 cell monolayer integrity. Deletion of HN001 spcB or spcA had no effect on functions other than the SpcA binding. Our findings indicate that the roles of a surface protein can vary considerably among the strains of a species, requiring functional data to validate the bioinformatics-based hypotheses.
    Date
    2016
    Author
    Wen, Wesley Xingli
    Rights
    The Author
    Publisher
    Massey University
    URI
    http://hdl.handle.net/10179/9993
    Collections
    • Theses and Dissertations
    Metadata
    Show full item record

    Copyright © Massey University
    Contact Us | Send Feedback | Copyright Take Down Request | Massey University Privacy Statement
    DSpace software copyright © Duraspace
    v5.7-27.11.15
     

     

    Tweets by @Massey_Research
    Information PagesContent PolicyDepositing content to MROCopyright and Access InformationDeposit LicenseDeposit License SummaryTheses FAQFile FormatsDoctoral Thesis Deposit

    Browse

    All of MROCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Copyright © Massey University
    Contact Us | Send Feedback | Copyright Take Down Request | Massey University Privacy Statement
    DSpace software copyright © Duraspace
    v5.7-27.11.15