Fungicide control of blind seed disease (Gloeotinia temulenta) without affecting AR37 endophyte in ryegrass seed crops : a thesis presented in partial fulfilment of the requirements for the degree of Master of AgriScience in Seed Science and Technology at Massey University, Palmerston North, New Zealand

dc.contributor.authorSandoval Cruz, Eduardo Antonio
dc.date.accessioned2014-07-04T02:48:22Z
dc.date.available2014-07-04T02:48:22Z
dc.date.issued2014
dc.description.abstractBlind seed disease (BS) is caused by the fungus Gloeotinia temulenta that directly affects the germination of grass seeds by killing the embryo. This disease continues to periodically affect the forage grass seed industry (Alderman, 2001). Epichloƫ fungal infection has a symbiotic association with grasses, providing beneficial traits to the plant host, having a crucial role in ensuring the persistence of grasses against biotic and abiotic threats (Mortimer and Di Menna, 1982; Popay and Rowan, 1994). This study focuses on new fungicide testing used to control BS and its effects on the transmission of the AR37 endophyte into the new seed generation. In this study, thousand seed weights, germination percentages, blind seed determinations and immunoblot detection of endophyte were carried out to assess the effects of different foliar fungicide treatments used to control blind seed (BS) and other pathogens, on the transmission of the AR37 endophyte into the developing seed of perennial and hybrid ryegrass cultivars (Samson, Horizon and PGone50). Trial one, but not trial two, was conducted on a paddock where there were abundant buried seed with BS disease to ensure a high potential for this disease to develop in the treatments plots. In trial one, germination in Samson with all fungicide treatments used was higher, and conversely BS was lower, than the control (except T12 composed of folpet). The treatments that best controlled BS in Samson were T2 (70% germination, composed by 100 g/ha prothioconazole applied at mid-flowering); T4 (72% germination, composed by 100 g/ha prothioconazole + 250 g/ha carbendazim applied at mid-flowering and mid-seed fill); T8 (73% germination, composed by 125 g/ha azoxystrobin with 189.2 g/ha tebuconazole applied twice (at mid-flowering and mid-seed fill and 250 g/ha carbendazim at mid-seed fill); and T9 (73% germination, composed by 100 g/ha prothioconazole + 75 g/ha isopyrazam + 250 g/ha carbendazim applied at mid-flowering and mid-seed fill). No reduction in endophyte transmission to seed was observed with the fungicide treatments with the exception of the applications of folpet. In turn, with Horizon several fungicide combinations were able to improve the germination performance by controlling BS, however Horizon had a lower performance in terms of controlling BS. The percentage of Horizon seed with endophyte in all treatments was very low, possible reflecting the use of seed with a low percentage of viable AR37 endophyte when the grass seed crop was established some years previously. In trial two, germination, endophyte content, and seed yield between the treatments were not different. All treatments (including the control) had a germination level between 84 to 89%. All treatments used in this trial maintained the AR37 endophyte content in the resultant seed lots. It is known that the application of some fungicides used to control a range of pathogens is detrimental to the viability of endophytes. Therefore, it is imperative that research in the quest of new treatments that control effectively BS without exerting detrimental effects on endophyte continues.en_US
dc.identifier.urihttp://hdl.handle.net/10179/5526
dc.language.isoenen_US
dc.publisherMassey Universityen_US
dc.rightsThe Authoren_US
dc.subjectBlind seed diseaseen_US
dc.subjectGloeotinia temulentaen_US
dc.subjectRyegrass diseasesen_US
dc.subjectFungicideen_US
dc.titleFungicide control of blind seed disease (Gloeotinia temulenta) without affecting AR37 endophyte in ryegrass seed crops : a thesis presented in partial fulfilment of the requirements for the degree of Master of AgriScience in Seed Science and Technology at Massey University, Palmerston North, New Zealanden_US
dc.typeThesisen_US
massey.contributor.authorSandoval Cruz, Eduardo Antonioen_US
thesis.degree.disciplineSeed Science and Technologyen_US
thesis.degree.grantorMassey Universityen_US
thesis.degree.levelMastersen_US
thesis.degree.nameMaster of AgriScience (M.AgriSc.)en_US
Files
Original bundle
Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
01_front.pdf
Size:
638.5 KB
Format:
Adobe Portable Document Format
Description:
Loading...
Thumbnail Image
Name:
02_whole.pdf
Size:
2.29 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
804 B
Format:
Item-specific license agreed upon to submission
Description: