Phreatomagmatic volcanic hazards where rift systems meet the sea, a study from Ambae Island, Vanuatu

Thumbnail Image
Open Access Location
Journal Title
Journal ISSN
Volume Title
Ambae Island is a mafic stratovolcano located in the northern Vanuatu volcanic arc and has a NE-SW rift-controlled elongated shape. Several hundred scoria cones and fissure-fed lava fields occur along its long axis. After many decades of quiescence, Ambae Island erupted on the 28th of November 2005, disrupting the lives of its 10,000 inhabitants. Its activity remained focused at the central (crater-lake filled) vent and this is where hazard-assessments were focused. These assessments initially neglected that maars, tephra cones and rings occur at each tip of the island where the eruptive activity occurred < 500 and < 300 yr B.P. The products of this explosive phreatomagmatic activity are located where the rift axis meets the sea. At the NE edge of the island five tephra rings occur, each comparable in size to those on the summit of Ambae. Along the NE coastline, a near-continuous cliff section exposes an up to 25 m thick succession of near-vent phreatomagmatic tephra units derived from closely spaced vents. This can be subdivided into two major lithofacies associations. The first association represents when the locus of explosions was below sea level and comprises matrix-supported, massive to weakly stratified beds of coarse ash and lapilli. These are dominant in the lowermost part of the sequence and commonly contain coral fragments, indicating that the loci of explosion were located within a reef or coral sediment near the syn-eruptive shoreline. The second type indicate more stable vent conditions and rapidly repeating explosions of high intensity, producing fine-grained tephra with undulatory bedding and cross-lamination as well as megaripple bedforms.
Uncorrected proof
Volcanic islands, Volcanic activity, Volcanic hazard analysis