Eliminating the wave-function singularity for ultracold atoms by a similarity transformation

dc.citation.issue4
dc.citation.volume2
dc.contributor.authorJeszenszki P
dc.contributor.authorEbling U
dc.contributor.authorLuo H
dc.contributor.authorAlavi A
dc.contributor.authorBrand J
dc.date.accessioned2023-12-01T01:05:24Z
dc.date.accessioned2024-07-25T06:48:28Z
dc.date.available2023-12-01T01:05:24Z
dc.date.available2024-07-25T06:48:28Z
dc.date.issued2020-11-20
dc.description.abstractA hyperbolic singularity in the wave function of δ-wave interacting atoms is the root problem for any accurate numerical simulation. Here, we apply the transcorrelated method, whereby the wave-function singularity is explicitly described by a two-body Jastrow factor, and then folded into the Hamiltonian via a similarity transformation. The resulting nonsingular eigenfunctions are approximated by stochastic Fock-space diagonalization with energy errors scaling with 1/Μ in the number M of single-particle basis functions. The performance of the transcorrelated method is demonstrated on the example of strongly correlated fermions with unitary interactions. The current method provides the most accurate ground-state energies so far for three and four fermions in a rectangular box with periodic boundary conditions.
dc.identifier.citationJeszenszki P, Ebling U, Luo H, Alavi A, Brand J. (2020). Eliminating the wave-function singularity for ultracold atoms by a similarity transformation. Physical Review Research. 2. 4.
dc.identifier.doi10.1103/PhysRevResearch.2.043270
dc.identifier.elements-typejournal-article
dc.identifier.issn2643-1564
dc.identifier.urihttps://mro.massey.ac.nz/handle/10179/70924
dc.publisherAmerican Physical Society
dc.relation.isPartOfPhysical Review Research
dc.rightsCC BY 4.0
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.titleEliminating the wave-function singularity for ultracold atoms by a similarity transformation
dc.typeJournal article
pubs.elements-id448794
pubs.organisational-groupOther
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
448794.pdf
Size:
1.19 MB
Format:
Adobe Portable Document Format
Description:
Collections