Identifying and prioritizing climate change adaptation measures in the context of electricity, transportation and water infrastructure: A case study

dc.citation.volume99
dc.contributor.authorRathnayaka B
dc.contributor.authorRobert D
dc.contributor.authorSiriwardana C
dc.contributor.authorAdikariwattage VV
dc.contributor.authorPasindu HR
dc.contributor.authorSetunge S
dc.contributor.authorAmaratunga D
dc.date.accessioned2024-08-12T21:54:16Z
dc.date.available2024-08-12T21:54:16Z
dc.date.issued2023-11-17
dc.description.abstractClimate Change Adaptation (CCA) has become a vital measure within every nation due to the significant impacts posed by climate change on Critical Infrastructures (CIs) and human lives. Despite scholars' identification of possible impacts on CIs, a lack of consideration for CCA measures to mitigate these impacts can be observed. This study aims to identify and prioritize CCA measures in the assets and infrastructure of critical sectors; electricity, transportation, and water supply considering Sri Lanka as a case study. The present study employed an Analytical Hierarchical Process (AHP) to prioritize CCA measures of these three infrastructure sectors as a system considering their interconnected and systematic nature. The prioritization process was informed by 42 open-ended expert interviews, and these interviews were also instrumental in validating the criteria used to evaluate the CCA measures. The study identified and discussed several CCA measures for different stages of the infrastructure life cycle, including planning, design and construction, and maintenance and retrofitting. The CCA measures were prioritized based on eight criteria obtained from a detailed review analysis. The results revealed that an asset management system at the planning stage is the most significant CCA measure for CIs. Furthermore, the study emphasizes that proper planning of evacuation routes, consideration of operational loads imposed by climate change, and nature-based solutions are significant CCA measures that need to be incorporated during infrastructure development. The outcome from this study provides insights for built environment professionals to adapt infrastructures to climate change. Additionally, the results of the study can be integrated into the rules and regulations of the developing countries to enhance climate resilience within the built environment.
dc.description.confidentialfalse
dc.edition.editionDecember 2023
dc.identifier.citationRathnayaka B, Robert D, Siriwardana C, Adikariwattage VV, Pasindu HR, Setunge S, Amaratunga D. (2023). Identifying and prioritizing climate change adaptation measures in the context of electricity, transportation and water infrastructure: A case study. International Journal of Disaster Risk Reduction. 99.
dc.identifier.doi10.1016/j.ijdrr.2023.104093
dc.identifier.elements-typejournal-article
dc.identifier.issn2212-4209
dc.identifier.number104093
dc.identifier.urihttps://mro.massey.ac.nz/handle/10179/71264
dc.languageEnglish
dc.publisherElsevier B.V.
dc.publisher.urihttps://www.sciencedirect.com/science/article/pii/S2212420923005733
dc.relation.isPartOfInternational Journal of Disaster Risk Reduction
dc.rights(c) 2023 The Author/s
dc.rightsCC BY-NC 4.0
dc.rights.urihttps://creativecommons.org/licenses/by-nc/4.0/
dc.subjectClimate change
dc.subjectCritical Infrastructure
dc.subjectClimate Change Adaptation
dc.subjectInfrastructure development
dc.subjectAHP
dc.subjectAsset management
dc.titleIdentifying and prioritizing climate change adaptation measures in the context of electricity, transportation and water infrastructure: A case study
dc.typeJournal article
pubs.elements-id485005
pubs.organisational-groupCollege of Health
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Published version.pdf
Size:
3.53 MB
Format:
Adobe Portable Document Format
Description:
485005 PDF.pdf
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
9.22 KB
Format:
Plain Text
Description:
Collections