Exploration of Limonium interspecific breeding possibility : a thesis presented in partial fulfilment of the requirement for the degree of Master of Science in Plant Science at Massey University, Palmerston North, New Zealand

Loading...
Thumbnail Image
Date
1995
DOI
Open Access Location
Journal Title
Journal ISSN
Volume Title
Publisher
Massey University
Rights
The Author
Abstract
Interspecific crossability was investigated in the genus Limonium (Plumbaginaceae). Six Limonium species were chosen for this study, five of which are dimorphic and L.perigrinum which is monomorphic. Ovary, ovule and embryo development was investigated, as were in vitro pollen germination and pollen tube growth. Unilateral incompatibility was observed in 8 interspecific combinations. A high frequency of interspecific crossability was observed between L.perezii X L.sinuatum and L.sinense X L.aureum. Pollen tubes were frequently observed penetrating the ovules in these crosses. Pollen tube growth that terminated in the styles or was restricted to the stigmas was found in some Limonium interspecific crosses. Abnormalities of pollen tube growth in the interspecific crosses included heavy callose deposits at the tips of pollen tubes; pollen tube branching and pollen tube growing in the wrong direction. Embryo, ovule and ovary development was studied with L.perezii plants following conspecific pollination. Three distinct groupings of florets can be recognised at the basis of their post-pollination growth and development. Twenty-six percent of conspecific pollinated florets showed no ovary and ovule growth. No embryo was found in this group. In eleven percent of florets, ovaries and ovules grew up to Day 12 after pollination and then shrivelled. No embryo was ever found in this group. Sixty-three percent florets produced embryos following conspecific pollination and developed normally. The viability of Limonium pollen was assessed with Alexander's stain and fluorochromatic reaction (FCR) stain. Optimal conditions for in vitro L.perezii pollen germination and tube growth were established. Poly-ethylene glycol and filter paper supports were of particular significance. In vitro pollen germination rate of about 40% was achieved. Plant growth regulators (IAA, GA 3 and ethylene), some minerals (manganese sulphate, copper sulphate) and prehydration treatment were used in experiments to improve pollen germination and tube growth. None of these factors, however, had positive effect on either pollen germination or tube growth. It was found that while L.perezii pollen tube growth tolerates a wide range of temperature, there is an optimum between 20°C-25°C.
Description
Keywords
Limonium, Floriculture, Plumbaginaceae
Citation