The Influence of Rotational Length, along with Pre- and Post-Grazing Measures on Nutritional Composition of Pasture during Winter and Spring on New Zealand Dairy Farms

dc.citation.issue15
dc.citation.volume12
dc.contributor.authorKumara SN
dc.contributor.authorParkinson TJ
dc.contributor.authorLaven R
dc.contributor.authorDonaghy DJ
dc.coverage.spatialSwitzerland
dc.date.accessioned2024-01-18T01:12:00Z
dc.date.accessioned2024-07-25T06:48:41Z
dc.date.available2022-07-29
dc.date.available2024-01-18T01:12:00Z
dc.date.available2024-07-25T06:48:41Z
dc.date.issued2022-08
dc.description.abstractThe quality of ryegrass−clover pasture was investigated between August (winter: start of calving) and November (spring: end of breeding) on pasture-based dairy farms (>85% of total feed from pasture) that had short (n = 2, Farms A and B; winter ~30 days, spring ~20−25 days) or long (n = 2, Farms C and D; winter ~35 days, spring ~25−30 days) grazing rotations to determine whether quality was affected by grazing rotation length (RT). Weekly assessments of pasture growth and herbage quality were made using a standardised electronic rising plate meter, and near-infrared spectroscopy, respectively. Data were subjected to repeated measure mixed model analysis, in which herbage quality was the outcome variable. The highest pre-grazing dry matter (PGDM) and height, post-grazing dry matter (DM) and height, and number of live leaves per tiller (leaf regrowth stage, LS) were present in late spring. Neutral detergent fibre (NDF), acid detergent fibre (ADF), metabolisable energy (ME), and organic matter digestibility (OMD) were positively correlated to each other (r2 ≥ 0.8) whilst ADF and lipid, and ADF and OMD were negatively correlated (r2 ≥ −0.8; p < 0.01). Metabolisable energy content was negatively correlated with ADF and NDF (r2 = −0.7, −0.8, respectively), and was inversely related to PGDM. Metabolisable energy was higher (p < 0.05) in farms with shorter (overall mean: 11.2 MJ/kg DM) than longer (10.9 MJ/kg DM) RT. Crude protein was also inversely related to PGDM and was higher with shorter (23.2% DM) than longer (18.3% DM; p < 0.05) RT. Pre-grazing DM affected the amount of pasture that was grazed and, hence, the amount of DM remaining after grazing (post-grazing DM or residual), so that PGDM was correlated with post-grazing height and residual DM (r2 = 0.88 and 0.51, respectively; both p < 0.001). In conclusion, RT, LS, and PGDM during winter and spring influenced the herbage quality, therefore, better management of pastures may enhance the productivity of dairy cows.
dc.format.pagination1934-
dc.identifier.author-urlhttps://www.ncbi.nlm.nih.gov/pubmed/35953923
dc.identifier.citationKumara SN, Parkinson TJ, Laven R, Donaghy DJ. (2022). The Influence of Rotational Length, along with Pre- and Post-Grazing Measures on Nutritional Composition of Pasture during Winter and Spring on New Zealand Dairy Farms.. Animals (Basel). 12. 15. (pp. 1934-).
dc.identifier.doi10.3390/ani12151934
dc.identifier.eissn2076-2615
dc.identifier.elements-typejournal-article
dc.identifier.issn2076-2615
dc.identifier.piiani12151934
dc.identifier.urihttps://mro.massey.ac.nz/handle/10179/70934
dc.languageeng
dc.publisherMDPI (Basel, Switzerland)
dc.relation.isPartOfAnimals (Basel)
dc.rights(c) 2022 The Author/s
dc.rightsCC BY 4.0
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectenergy
dc.subjectnutritional composition
dc.subjectpasture
dc.subjectprotein
dc.subjectrotational grazing
dc.titleThe Influence of Rotational Length, along with Pre- and Post-Grazing Measures on Nutritional Composition of Pasture during Winter and Spring on New Zealand Dairy Farms
dc.typeJournal article
pubs.elements-id455441
pubs.organisational-groupOther
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Published version
Size:
2.26 MB
Format:
Adobe Portable Document Format
Description:
Collections