Development of a pH-Responsive Delivery System Suitable for Naringenin and Other Hydrophobic Flavonoids Using the Interactions Between Basil Seed Gum and Milk Protein Complexes

Loading...
Thumbnail Image

DOI

Open Access Location

Journal Title

Journal ISSN

Volume Title

Publisher

MDPI (Basel, Switzerland)

Rights

(c) The author/s
CC BY 4.0

Abstract

Incorporating hydrophobic flavonoids such as naringenin into food systems is challenging due to their poor water solubility and instability. Effective delivery systems are essential to improve solubility, dispersibility, and controlled release during digestion. This study developed a food-grade encapsulation system using basil seed gum water-soluble extract (BSG-WSE) combined with proteins, sodium caseinate (NaCas) and whey protein isolate (WPI), via pH-driven and mild heat treatments in aqueous media, without the use of organic solvents, to ensure safety and sustainability. BSG-WSE and NaCas were tested at mass ratios of 1:1, 1:3, and 1:5 under pH conditions of 4, 5, and 7, followed by heat treatments at 60 °C or 80 °C for 30 min. The total biopolymer concentrations were 0.15%, 0.3%, and 0.45% (w/v). The most stable colloidal system was obtained at a 1:1 ratio, pH 4, and 60 °C, which was further evaluated for two additional flavonoids (rutin and quercetin) and with WPI as an alternative protein source. The highest loading capacity (11.18 ± 0.17%) and encapsulation efficiency (72.50 ± 0.85%) were achieved for naringenin under these conditions. Quercetin exhibited superior performance, with a loading capacity of 14.1 ± 3.12% and an encapsulation efficiency of 94.36 ± 5.81%, indicating a stronger affinity for the delivery system. WPI showed lower encapsulation efficiency than NaCas. Ternary systems (BSG-WSE, NaCas, and naringenin) formed under different pH and heat treatments displayed distinct morphologies and interactions. The pH 4 system demonstrated good dispersion and pH-responsive release of naringenin, highlighting its potential as a delivery vehicle for hydrophobic flavonoids. BSG-WSE significantly improved the stability of protein-based complexes formed via pH-driven assembly. Physicochemical characterization, rheological analysis, and release studies suggest that this system is particularly suitable for semi-solid food products such as yogurt or emulsions, supporting its application in functional food development.

Description

Citation

Premathilaka R, Golding M, Singh J, Rashidinejad A. (2026). Development of a pH-Responsive Delivery System Suitable for Naringenin and Other Hydrophobic Flavonoids Using the Interactions Between Basil Seed Gum and Milk Protein Complexes. Foods. 15. 2.

Collections

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as (c) The author/s