High level sill and dyke intrusions initiated from rapidly buried mafic lava flows in scoria cones of Tongoa, Vanuatu (New Hebrides), South Pacific

Loading...
Thumbnail Image
Date
2006-01-01
DOI
Open Access Location
Authors
Nemeth, Karoly
Journal Title
Journal ISSN
Volume Title
Publisher
Massey University.
Rights
Abstract
Scoria cones are generally considered to grow rapidly in days to weeks or months. During their growth lava flows may be fed onto the cone surface from lava-lake breaches, or form by coalescence of spatter; such flows are preserved interbedded with scoria lapilli and ash beds. On Tongoa, an island of the Vanuatu volcanic arc in the South Pacific, a series of scoria cones developed during the Holocene, forming a widespread monogenetic volcanic field. Half sections of scoria cones along the coast expose complex interior architecture cone architectures. On the western side of Tongoa Island a scoria cone remnant with steeply crater-ward dipping beds of scoria ash and lapilli contains various dm-to-m thick lava flows, which are connected by irregular dikes cutting obliquely across the beds of the cone. The lava flows are coherent igneous bodies with well-developed flow top and basal breccias. The lavas interbedded with the cone-forming layers are part of a larger (up to 7 m thick) body that is connected to dykes and sills of irregular geometries that intrude the cone's pyroclastic layers. This 3D relationship suggests that the lava flows were buried quickly under the accumulating scoriaceous deposits. This allowed subsequent escape of magma from the fluid interiors of flows, with the magma then squeezed upward or laterally into the accumulating pyroclastic pile. Movement of the pile above the partly mobile lava, and potential destabilisation during intrusion into the pile of lava squeezed from the flows, may signal the onset of localised cone failures, and could be implicated in development of major cone breaches (e.g. Paricutin).
Description
Keywords
Citation
Collections