PERIODIC SOLUTIONS FOR A PAIR OF DELAY-COUPLED ACTIVE THETA NEURONS

Loading...
Thumbnail Image

Date

2025-04-03

DOI

Open Access Location

Authors

Journal Title

Journal ISSN

Volume Title

Publisher

Cambridge University Press on behalf of Australian Mathematical Publishing Association Inc

Rights

(c) 2025 The Author/s
CC BY 4.0

Abstract

We consider a pair of identical theta neurons in the active regime, each coupled to the other via a delayed Dirac delta function. The network can support periodic solutions and we concentrate on solutions for which the neurons are half a period out of phase with one another, and also solutions for which the neurons are perfectly synchronous. The dynamics are analytically solvable, so we can derive explicit expressions for the existence and stability of both types of solutions. We find two branches of solutions, connected by symmetry-broken solutions which arise when the period of a solution as a function of delay is at a maximum or a minimum.

Description

Keywords

neuron dynamics, delay differential equations, bifurcation

Citation

Laing CR. (2025). PERIODIC SOLUTIONS FOR A PAIR OF DELAY-COUPLED ACTIVE THETA NEURONS. ANZIAM Journal. 67.

Collections

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as (c) 2025 The Author/s