The eggshell structure in apteryx; form, function, and adaptation

dc.citation.issue7
dc.citation.volume11
dc.contributor.authorVieco-Galvez D
dc.contributor.authorCastro I
dc.contributor.authorMorel PCH
dc.contributor.authorChua WH
dc.contributor.authorLoh M
dc.coverage.spatialEngland
dc.date.accessioned2023-07-10T03:19:55Z
dc.date.accessioned2023-09-04T01:40:38Z
dc.date.available2021-02-26
dc.date.available2023-07-10T03:19:55Z
dc.date.available2023-09-04T01:40:38Z
dc.date.issued2021-04
dc.date.updated2023-07-10T03:07:21Z
dc.description© 2021 The Authors.
dc.description.abstractApteryx is a genus of flightless birds endemic to New Zealand known to lay very large eggs in proportion to body weight. The eggshell of Apteryx is unusually thin and less porous than allometrically expected possibly as a compensation for a very long incubation period. Past studies have been carried out on Apteryx australis, a species which once comprised all kiwi with brown plumage, now separated into three distinct species. These species use different habitats and live at different latitudes and altitudes, therefore generating a need to revise our knowledge of the attributes of their eggshells. In this study, we measured the physical characteristics and water conductance on eggshell fragments of these three species and Great-spotted Kiwi and relate them to the environmental conditions of their respective environments; we also measured the water vapor conductance of Brown Kiwi eggs of late stages of incubation. We found that several trade-offs exist between incubation behavior, environmental conditions, and eggshell structure. We found differences between species in eggshell water vapor conductance seemingly related to altitude; Brown Kiwi and Rowi generally inhabiting lower altitudes had the highest conductance and Tokoeka, generally living in montane environments, the lowest. This is achieved by an increased eggshell thickness rather than a pore area reduction. Finally, the water vapor conductance late in incubation was 58% higher than infertile unincubated eggs, suggesting a drastic increase in conductance throughout the long incubation period. Using the values previously reported, we calculated the embryonic eggshell thinning to be 32.5% at the equatorial region of the eggshell. We describe several new features, such as triangular mineral particles in the cuticle, reported for the extinct Trigonoolithus amoei, and confirmed the existence of plugged pores. We suggest that these structures provide microbial protection needed by a burrow nesting species with a long incubation period.
dc.description.confidentialfalse
dc.edition.editionApril 2021
dc.format.extent3184-3202
dc.identifierECE37266
dc.identifierhttps://www.ncbi.nlm.nih.gov/pubmed/33841776
dc.identifier.citationVieco-Galvez D, Castro I, Morel PCH, Chua WH, Loh M. (2021). The eggshell structure in apteryx; form, function, and adaptation.. Ecol Evol. 11. 7. (pp. 3184-3202).
dc.identifier.doi10.1002/ece3.7266
dc.identifier.eissn2045-7758
dc.identifier.elements-typejournal-article
dc.identifier.harvestedMassey_Dark
dc.identifier.issn2045-7758
dc.identifier.urihttp://hdl.handle.net/10179/19859
dc.languageeng
dc.publisherJohn Wiley and Sons, Ltd
dc.publisher.urihttps://onlinelibrary.wiley.com/doi/10.1002/ece3.7266
dc.relation.isPartOfEcol Evol
dc.rightsCC BY-ND 4.0
dc.rights.urihttps://creativecommons.org/licenses/by-nd/4.0/
dc.subjectApteryx
dc.subjectKiwi eggs
dc.subjectembryonic gas exchange
dc.subjectincubation physiology
dc.subjectwater vapour conductance
dc.titleThe eggshell structure in apteryx; form, function, and adaptation
dc.typeJournal article
pubs.elements-id441669
pubs.organisational-groupOther
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
441669 PDF.pdf
Size:
1.99 MB
Format:
Adobe Portable Document Format
Description:
Collections