Studies on plants that hyperaccumulate copper, cobalt and nickel : their potential for use in phytomining and phytoremediation : a thesis presented in partial fulfillment of the requirements for the degree of Masterate of Science in Soil Science at Massey University

Thumbnail Image
Open Access Location
Journal Title
Journal ISSN
Volume Title
Massey University
The Author
This thesis reviews three lines of research on hyperaccumulators to examine their potential for phytoremediation and phytomining. The first line of research was to test the affect of nutrient addition on biomass and nickel uptake by two nickel hyperaccumulators, Alyssum bertotonii and Streptanthus polygaloides. Addition of fertiliser increased the biomass although the maximum amount added was found to be suboptimal. Nutrient addition did not affect the rate of nickel uptake. Larger plants contained a more dilute nickel content but still had an overall larger amount than smaller plants. The second line of research was to test the affect of chelates on metal uptake by copper and cobalt flora of the Democratic Republic of Congo (formally Zaïre) and a copper tolerant plant from Spain, Erica andevalensis. EDTA and Citric Acid increased uptake of copper in these plants but had no effect on the uptake of cobalt and nickel. EDTA increased the uptake of lead by Alyssum bertotonii but did not affect the uptake of zinc and cadmium. The third line of research was to examine the reality of hyperaccumulators of copper and cobalt. Copper and cobalt hyperaccumulation does in fact exist but not to the extent reported previously. There is a good possibility that the previously reported values for copper and cobalt hyperaccumulation are in some cases erroneous due to high iron levels indicating contamination of plant samples by soil.
Hyperaccumulator plants, Plants, Effect of heavy metals on, Metals -- Biocompatibility