Analysis of gate residues in the type 2 secretin PulD : a thesis presented in partial fulfilment of the requirements for the degree of Masters of Science in Biochemistry at Massey University, Manawatu, New Zealand

dc.contributor.authorWhitaker, Rowan
dc.date.accessioned2012-09-04T02:15:05Z
dc.date.available2012-09-04T02:15:05Z
dc.date.issued2012
dc.description.abstractSecretins are gated outer-membrane channels with large internal pore sizes (6-10 nm). They are the outer membrane components of bacterial trans-envelope complexes that assemble/export filamentous bacteriophages as well as pili, complex protein toxins and virulence factors. 12-14 identical subunits form the radially symmetrical channels which share a common architecture - a 3-tiered barrel with middle septum. Secretins are essential components of Gram-negative Type 2/3 secretion systems, spanning the outer membrane and interacting with the inner membrane components of transport machinery. Since secretins have such large pore diameters a simple channel would allow noxious compounds through the normally impermeable outer membrane. The presence of a gate structure allows for the controlled opening and closing of secretin channels, in response to specific cues regulating protein export. Here I have determined gate-structural elements of the Klebsiella oxytoca Type 2 Secretin, PulD. Random mutagenesis coupled with selection for open or 'leaky'-gate phenotypes created a library of mutations which were mapped by DNA sequence analysis. Analysis of leaky mutants revealed 12 distinct missense point mutations in pulD. Additionally, two deletion mutants were isolated, spanning 5 and 9 amino acids, both conferring a leaky gate phenotype. Comparison of these pulD mutations with those previously identified in another secretin gene encoding the Escherichia coli filamentous phage f1 secretin pIV, reveals mutations in both are localised in two main clusters that correspond to regions within the secretin homology domain. Named GATE1 and GATE2, these clusters indicate functional gate regions in both secretins.en
dc.identifier.urihttp://hdl.handle.net/10179/3770
dc.language.isoenen
dc.publisherMassey Universityen_US
dc.rightsThe Authoren_US
dc.subjectSecretinsen
dc.subjectGastrointestinal hormonesen
dc.subjectKlebsiella oxytocaen
dc.subjectMutationen
dc.titleAnalysis of gate residues in the type 2 secretin PulD : a thesis presented in partial fulfilment of the requirements for the degree of Masters of Science in Biochemistry at Massey University, Manawatu, New Zealanden
dc.typeThesisen
massey.contributor.authorWhitaker, Rowanen
thesis.degree.disciplineBiochemistryen
thesis.degree.grantorMassey Universityen
thesis.degree.levelMastersen
thesis.degree.nameMaster of Science (M.Sc.)en
Files
Original bundle
Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
02_whole.pdf
Size:
913.1 KB
Format:
Adobe Portable Document Format
Description:
Loading...
Thumbnail Image
Name:
01_front.pdf
Size:
131.26 KB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
804 B
Format:
Item-specific license agreed upon to submission
Description: