Recent Advances in Pulse-Coupled Neural Networks with Applications in Image Processing

Loading...
Thumbnail Image

Date

2022-10-11

DOI

Open Access Location

Journal Title

Journal ISSN

Volume Title

Publisher

MDPI (Basel, Switzerland)

Rights

(c) 2022 The Author/s
CC BY

Abstract

This paper surveys recent advances in pulse-coupled neural networks (PCNNs) and their applications in image processing. The PCNN is a neurology-inspired neural network model that aims to imitate the information analysis process of the biological cortex. In recent years, many PCNN-derived models have been developed. Research aims with respect to these models can be divided into three categories: (1) to reduce the number of manual parameters, (2) to achieve better real cortex imitation performance, and (3) to combine them with other methodologies. We provide a comprehensive and schematic review of these novel PCNN-derived models. Moreover, the PCNN has been widely used in the image processing field due to its outstanding information extraction ability. We review the recent applications of PCNN-derived models in image processing, providing a general framework for the state of the art and a better understanding of PCNNs with applications in image processing. In conclusion, PCNN models are developing rapidly, and it is projected that more applications of these novel emerging models will be seen in future.

Description

Keywords

pulse-coupled neural network, quasi-continuous model, heterogeneous PCNN, image processing

Citation

Liu H, Liu M, Li D, Zheng W, Yin L, Wang R. (2022). Recent Advances in Pulse-Coupled Neural Networks with Applications in Image Processing. Electronics (Switzerland). 11. 20.

Collections

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as (c) 2022 The Author/s